	GPO PRICE \$
N66-19874	CFSTI PRICE(S) \$ 3.70
(PAGES) (THRU)	Hard copy (HC)
(NASA CR OR TMX OR AD NUMBER) (CATEGORY)	Microfiche (MF) / · /3

COMPONENTS AND SUB-ASSEMBLIES SNAP 8 RADIATION EFFECTS TEST PROGRAM VOLUME III

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

Prepared under Subcontract to Aerojet General Corp., Azusa, Calif., under Contract No. NAS 5-417 by GEORGIA NUCLEAR LABORATORIES OF LOCKHEED-GEORGIA CO. Dawsonville, Ga.

for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

FOREWORD

This report and the results described herein (originally issued as Georgia Nuclear Report ER 7644) cover irradiation of selected components and subassemblies at the Radiation Effects Reactor, Georgia Nuclear Laboratories, Dawsonville, Georgia.

This work was done under subcontract for the Aerojet General Corporation (NASA Contract No. NAS 5-417) in support of the SNAP 8 Radiation Effects on Materials and Components Program. The contract and subcontract were under the technical management of H. O. Slone and A. W. Nice, respectively, of the NASA Lewis Research Center.

TABLE OF CONTENTS

1.0	TEST PERFORMANCE SUMMARY	1-1
2.0	SUMMARY OF RESULTS	2-1
3.0	COMPONENTS	3-1
3. 1	Low Current Diodes	3-2
3. 2	SCR's	3-39
3.3	High Current Diodes	3-53
3.4	Resistors and Capacitors	3-111
4.0	SUBASSEMBLIES	4-1
4. 1	Voltage Sensing	4-5
4. 2	4 Diode Frequency Sensing	4-53
4. 3	8 Diode Frequency Sensing	4-98
4. 4	Magnetic Amplifier	4-143
4.5	SCR's Trigger and Control	4-158
5.0	NUCLEAR MEASUREMENTS	5-1
	ADDENDUM	A-1

1.0 TEST PERFORMANCE SUMMARY

The test herein reported was performed in accordance with the Experimental Design Manual, Electronic Components and Subassemblies. The summary is presented to familiarize the reader with the test history. Detailed procedures and methods may be found in the Experimental Design Manual.

All material and test specimens were selected by and received from the Aerojet-General Corporation. The test included selected components and operating assemblies. Twelve of each of the following specimens were included in the test: COMPONENTS

Diodes: 1N3888, 1N2539, 1N3878, 1N547, GE-90*, GE-91*, GE-92*

SCR's: 2N-1778

Resistors designated GE-86* and GE-87*

Capacitors: 10CPM174 and GE-89*

Subassemblies: Voltage Sensing, Magnetic Amplifiers, Frequency Sensing

(4 diode), Frequency Sensing (8 diode), SCR Trigger and

Control

The specimens were divided into two major catagories with half of the specimens for the 160°F and half for the 100°F radiation tests. Each category was subdivided into irradiation specimens and control specimens. The division and identification is detailed in the design manual.

The environmental chamber was of the controlled heat sink type and was fully enclosed and thermally insulated. A helium atmosphere was maintained over the specimens with helium being constantly added to make up for the loss through the small leaks. Water was used as the heat transfer fluid.

^{*} Aerojet-General Corp. designations.

The semiconductor components were mounted on finned heat sinks which in turn were mounted on metal aluminum plates. The plates were mounted on the heat sink. The actual temperature of the components was not controlled in that each stabilized at its own particular temperature. The effect of localized temperature changes were evident during the test. The presence of the 400 cycle excitation raised the temperature of the 1N3878 components approximately 10° F during the test. The temperature of the heat sinks was also raised due to the increased forward drops in the diodes themselves.

The thermocouple locations are shown in Figures 3 and 4.

The temperature range for all the thermocouples on the $160^{\circ}F$ test was $157^{\circ} \pm 3^{\circ}F$ except for the thermocouple mounted on the diode heat sink which registered $150^{\circ}F + 10^{\circ}F$.

The temperature range for all the thermocouples on the $100^{\circ}F$ test was $105^{\circ}F + 3^{\circ}F$ except for the thermocouple mounted on the diode heat sink which registered $106^{\circ}F$ + $10^{\circ}F$.

Short downward excursions in temperature were evident at times when water was added to the system and when checks were made of the ice bath. Small variations were also evident at the water inlet locations.

The 160°F irradiation was conducted with the reactor operating at 1 MW, 3 MW and shutdown. This mode of operation was selected to detect rate effects.

The number of data cycles planned in the design manual was not reached because of the accent on backup or manual data and the long time required to complete each data cycle. The initial phase of the 160° F test was conducted with the integrated exposure being reached in steps with data taken at each step to evaluate the effect of dose rate on component performance. The reactor cycle

in the second or 100° F irradiation was conducted in conformance with the design manual until the prescribed nuclear dose of 2×10^{11} n/cm² had been reached since no rate effect was apparent during the first run. When the designated dose had been reached, the power level was increased to 3 MW and the run continued for 10.4 hours. The LiH shield was then removed and the power level decreased to 1 MW and the run continued for 2.0 hours. The power was raised to 3 MW for 2.9 hours to the end of the irradiation. The nuclear environment was controlled in this manner to show where radiation effects occurred and to give better definition to component and subassembly radiation tolerances. The reactor operating profile and dose rates are shown in the section on nuclear environments.

The 100°F irradiation was conducted as soon as the specimens could be installed following the 160°F test. This procedure was followed to keep wiring errors at a minimum. The high radiation tolerances and the absence of rate effects on the 160°F test article made this feasible and precluded the necessity of periodic shutdowns. The test had originally been planned with a month's separation between the two runs.

The test program was conducted in conformance with the design manual except as noted in this report.

Figures 1-1 and 1-2 show the irradiation and control environmental heat sinks prior to the mounting of the specimens. The studs for mounting the panels are evident.

Figure 1-3 is the control heat sink with the test articles in place. The thermocouple locations are indicated.

Figures 1-4 and 1-5 show the irradiation test aricles mounted on the heat sink and the leads partially attached. The leads were later connected to the test articles to the junction board in the car pits. Thermocouple locations are also shown on Figure 1-4.

Figure 1-6 is the automatic data system used to measure and record component operating characteristics. The digital voltmeter, flexowriter-tape punch, card programmer, programmable power supply and switching system may be seen.

The subassembly measuring system is shown in Figure 1-7. The circuit diagrams, test procedures and channel identification were conveniently placed for ready reference.

The resistance and capacitance measuring system is shown in Figure 1-8.

Figure 1-9 shows the backup or manual data panels for the assembly. Note the quantity of terminals used for this phase of the test. Switch panels controlling power to each subassembly were installed after this picture was taken.

The test car is shown in Figure 1-10 and 1-11 prior to placing the front cover in place and positioning it at the reactor. The hot water reservoir and heat exchanger are visible in Figure 1-10. The LiH shield is shown in the raised position in Figure 1-11. Also shown are lead wires going to the junction panel in the car pit.

Figure 1-12 shows the construction of a typical voltage divider box used on the subassembly data sustem.

Figure 1-13 shows part of the automatic switching equipment employed in the components excitation and measuring system.

The load banks are shown in Figures 1-14 and 1-15.

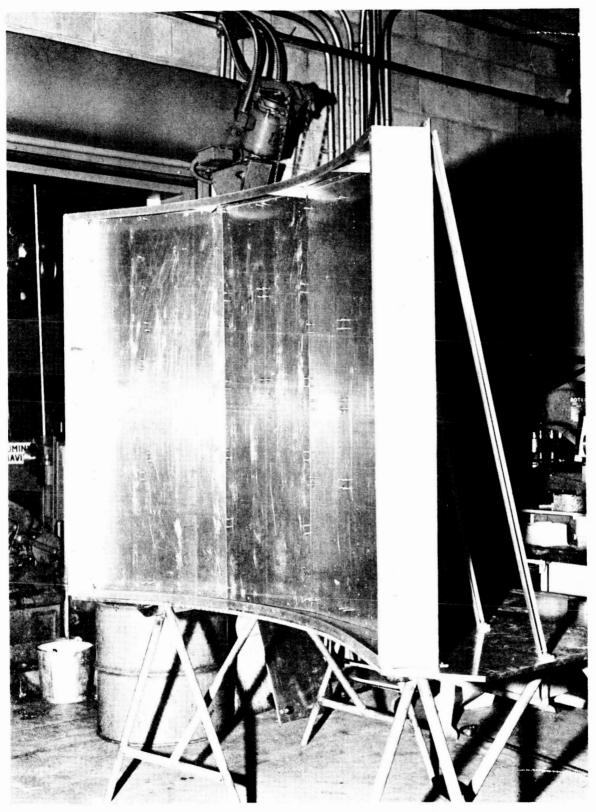


FIGURE 1-1 IRRADIATION HEAT SINK CHAMBER DURING CONSTRUCTION

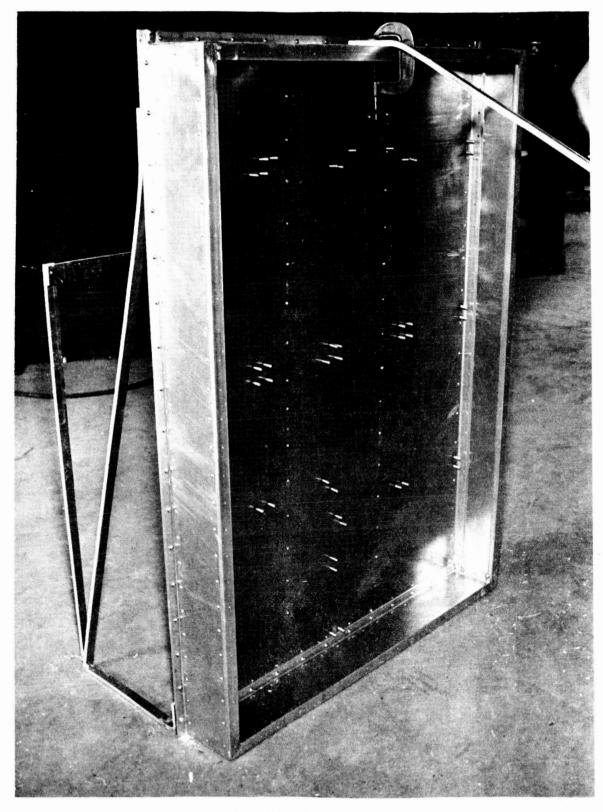


FIGURE 1-2 CONTROL HEAT SINK CHAMBER DURING CONSTRUCTION

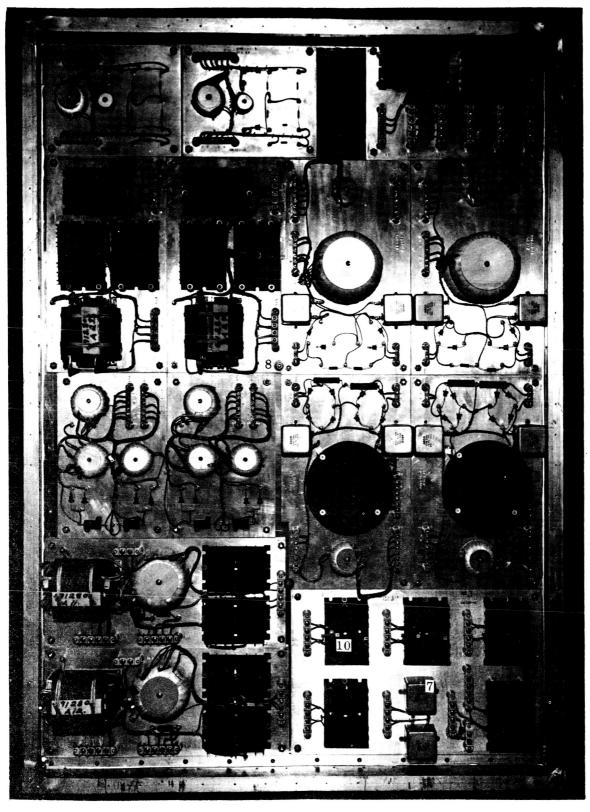
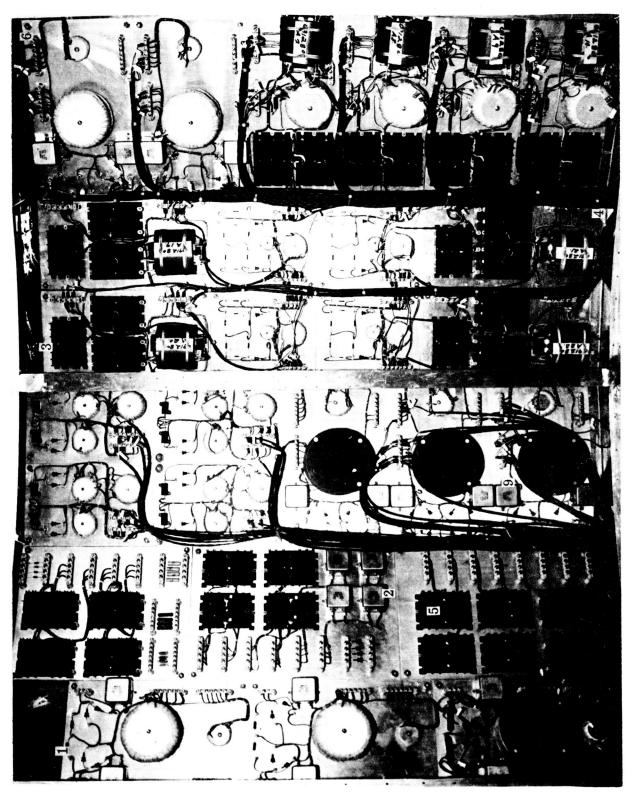



FIGURE 1-3 CONTROL TEST PANELS MOUNTED IN HEAT SINK CHAMBER

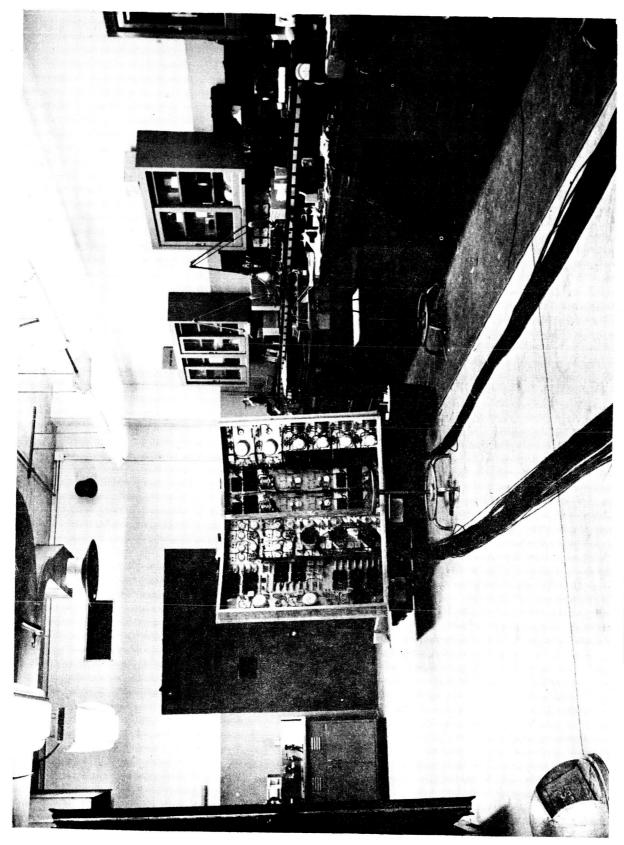
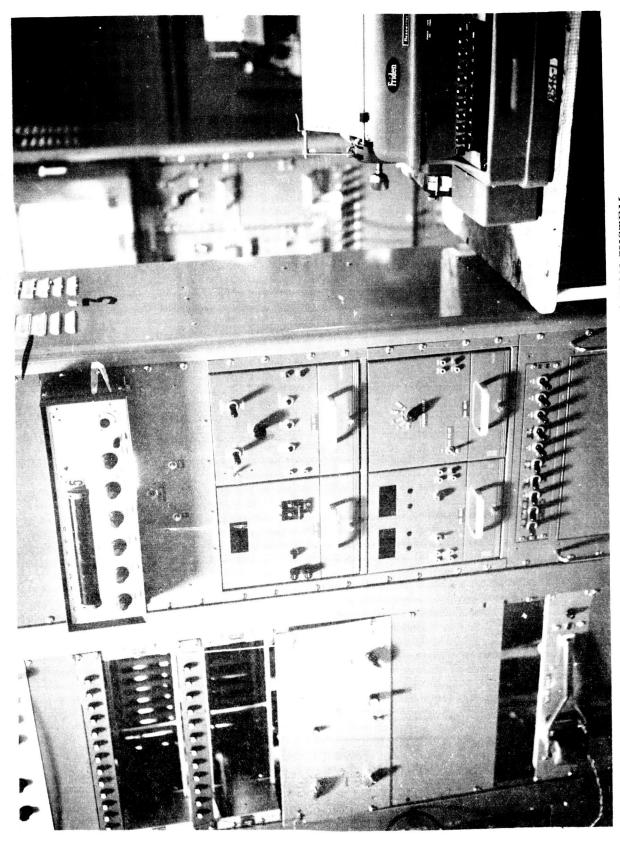



FIGURE 1-5 IRRADIATION TEST PANELS DURING HOOKUP

1-10

FIGURE 1-7 SUBASSEMBLIES INSTRUMENTATION SYSTEM

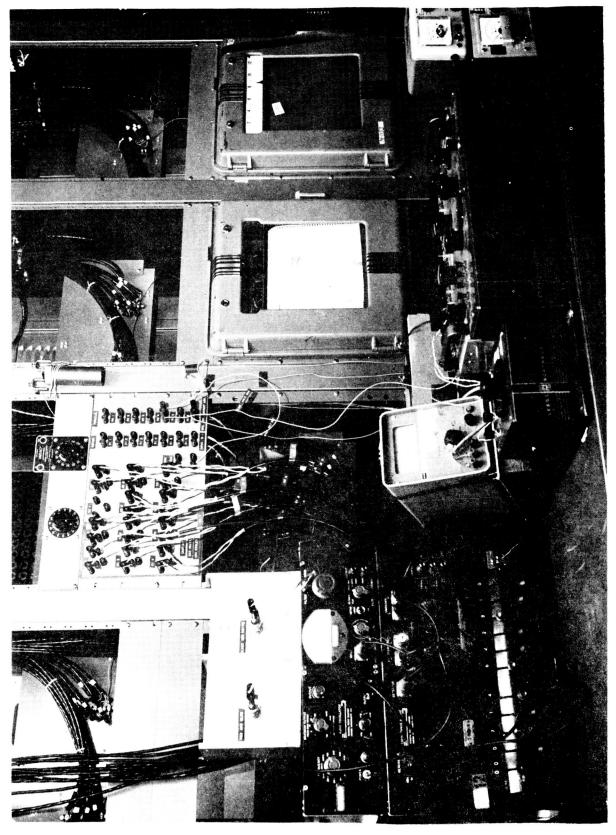
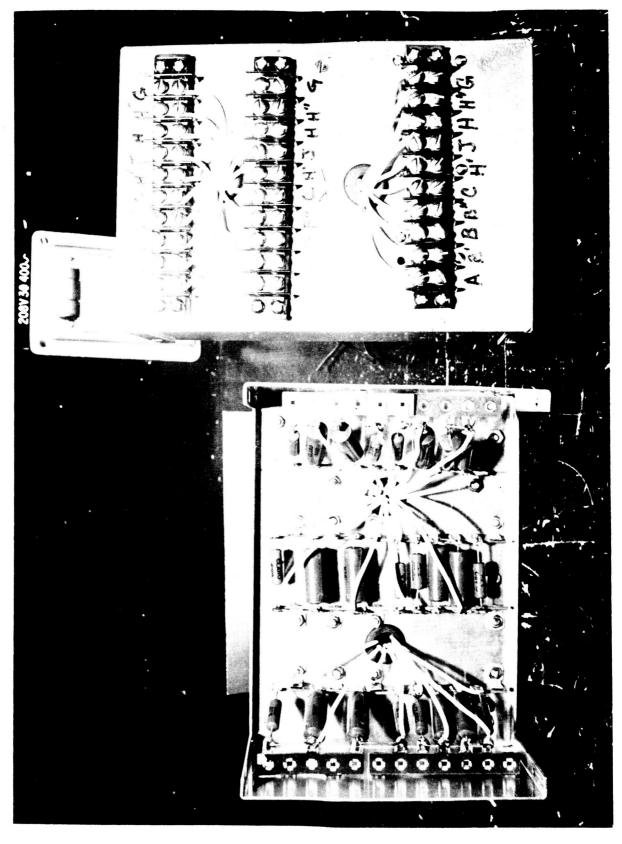



FIGURE 1-9 SUBASSEMBLIES "BACKUP DATA" PANELS

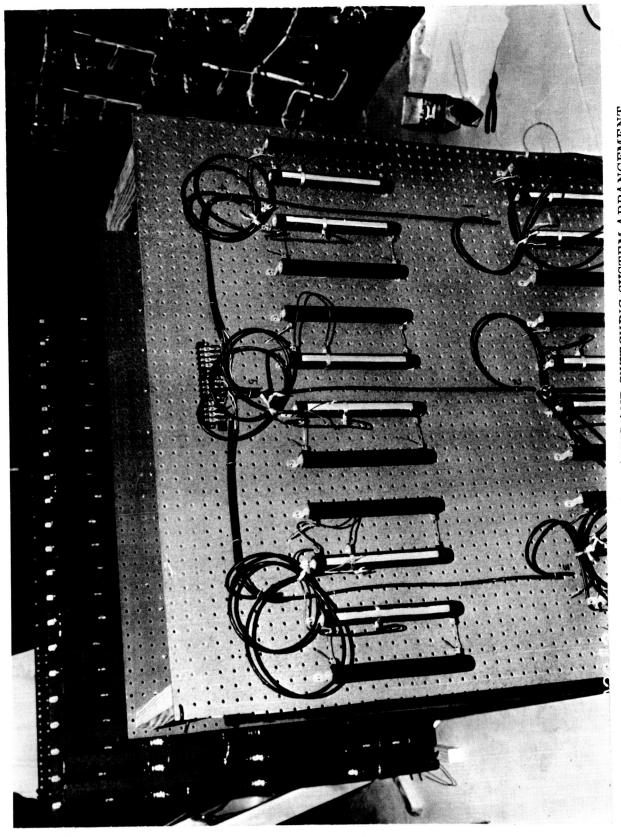
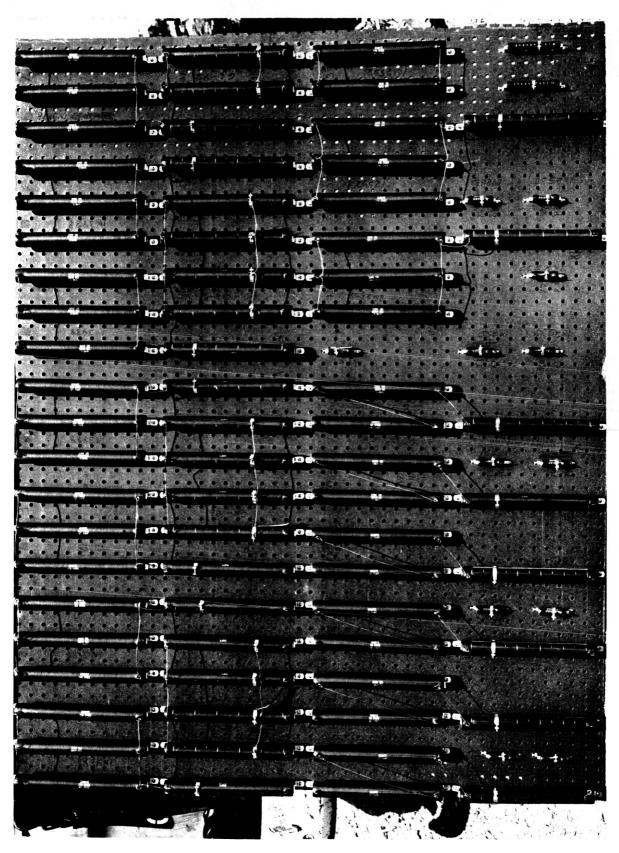

FIGURE 1-10 IRRADIATION TEST CAR AT REACTOR PRIOR TO POSITIONING AND CLOSING

FIGURE 1-11 IRRADIATION TEST CAR SHOWING LIH SHIELD AND REACTOR



1-16

FIGURE 1-13 COMPONENTS EXCITATION - MEASURING CIRCUITS SWITCH PANEL

1-18

2.0 SUMMARY OF RESULTS

The 160° F test at 2×10^{11} nvt showed barely discernible changes in the subassembly operation due to irradiation effects. Slight increases in reverse leakage and forward drop of the diodes were noted. The 100° F test, having the higher nuclear exposure, revealed large changes in both components and subassemblies. The data from both tests indicate no difference due to temperature. The accent in this report is, therefore, on the second or 100° F test.

The diodes underwent changes as expected. The forward voltage drops increased and the reverse leakage currents increased. In general, the effect of radiation is to destroy the junction and reduce the semiconductors to intrinsic semiconductor material. The exposure in these tests were not sufficient to do this but the trend is in that direction.

Changes in operational characteristics of all subassemblies can be explained by the changes that occurred in the semiconductors. Bench tests performed after the irradiation had been completed where "control" semiconductors were substituted for the irradiated ones, returned all subassemblies to normal operating conditions. No other components (magnetic cores, transformers, resistors, capacitors, etc.) changed sufficiently to be detectable in the operating characteristics.

Most of the subassemblies employed the principal of differential output and one would expect most of the changes to balance out. Radiation changes to semiconductors are well known to show considerable scatter and this scatter was evident in these tests. The circuits became unbalanced and shifted the outputs accordingly. This phenomena was especially evident in the voltage sensing units.

The SCR's suffered increased forward blocking currents, reverse leakage current and increased firing voltages. At the end of the test many of the SCR's would not fire. Some would fire but with the firing voltages that exceeded the power rating of the gate. The SCR's began to show evidence of transistor-like operation with very low betas.

The resistors and capacitors showed no change with radiation. Slight change due to temperature were evident.

Post irradiation inspection revealed that some, but not all, of the ceramic terminal strips turned a bluish grey color. The anodized coating on a few of the heat sinks turned a copperish color.

The adhesive tape on the magnetic cores became exceptionally sticky and would adhere readily to most surfaces.

3.0 COMPONENTS

General

The discussion of results is broken down into three sections; two sections deal with diodes and one section with the SCR's. The diodes are categorized according to the current rating; high current and low current. Five types comprise the high current group wherein the forward current test conditions ranged from 120 milliamperes to 9 amperes. Three types make up the low current group wherein the forward current test conditions ranged from 5 to 150 milliamperes. The high current group includes the GE-91, the Hughes 1N3888, the Bradley 1N2592, the Hughes 1N3878 and the GE-92. The low current group includes the RCA 1N547, the Bradley 1N2539 and the GE-90.

Forward and reverse characteristics for a typical diode of each group are plotted against neutron exposure and all other specimens with their respective typical data points are included in tabular form. The tabulated data represents about one-fifth the total recorded during the $100^{\circ}F$ test. The forward characteristics are plotted for all three conditions of forward current whereas the reverse characteristics are plotted for the highest peak inverse voltage. The curves are plotted primarily for the $100^{\circ}F$ run, but to show trends, if any, points are shown on the same curve for the $160^{\circ}F$ run. No plots or tables are included for reverse characteristics on the $160^{\circ}F$ run due to a lack of data which resulted from circuitry problems. A detailed explanation is found in succeeding pages. The reverse leakage currents made at the RER cannot be compared to the laboratory measurements due to extraneous noise, leakage and ionization. Relative changes can be noted and applied to the absolute measurements made in the laboratory.

Pre and post irradiation bench test data at ambient temperature for the 100°F specimens and post irradiation bench data for the 160°F specimens are included in tabular form with typical forward and reverse characteristics shown graphically.

These bench tests were preformed in addition to the tests outlined in the Design Manual to verify data taken during the reactor run.

The bold line found on the tables denotes the point at which the LiH shield was removed.

3.1 LOW CURRENT DIODES

Three types of diodes are discussed in this section; the RCA 1N547, the Bradley 1N2539 and the GE-90. This group comprised the diodes tested where forward current conditions ranged from 5 to 150 milliamperes. Both tabular and graphical means are used to report the results of the tests.

Figures 3-1 and 3-2 show the pre and post irradiation bench data for forward and reverse characteristics for a typical diode of each type. Tables 3-1 thru 3-24 include the data for all diodes with an asterisk indicating the diode plotted.

Figure 3-2 indicates the increase in the level of reverse leakage from the pretest value. Normally, the current increased by a factor of approximately 14 on the GE-90 to 33 on the 1N2539.

Figure 3-1 indicates a definite increase in the level of forward voltage drop from the pre-test value. The spread of voltage drop versus forward current ranged from 45 millivolts on the 1N547 to 118 millivolts on the GE-90 in pre-irradiation test data whereas the spread ranged from 294 millivolts on the 1N2539 to 1.033 volts on the 1N547 for the post irradiation test data. The increase in the forward drop at the lower currents ranged from a factor of 1.17 on the GE-90 to 2.69 on the 1N547. The shift at the higher forward currents ranged from a factor of 1.85 on the GE-90 to 3.85 on the 1N547.

Figures 3-3, 3-5 and 3-7 show forward voltage drop versus neutron exposure for the three types of diodes. Tables 3-4 thru 3-24 include the data for all diodes with an asterisk indicating the diode plotted. In general, no significant trend is exhibited in any of the three types until an exposure of approximately 6×10^{11} n/cm² is reached. A marked increase in the slope is particularly apparent when the lithium hydride shield was removed. The voltage drop on the GE-90 at the lowest forward current appears to show little increase with exposure whereas the higher forward currents show a marked increase.

Figures 3-4, 3-6 and 3-8 show reverse leakage versus neutron exposure of the three types of diodes. No apparent continuous trend is noticeable in any of the three types of diodes until an exposure of approximately $4 \times 10^{12} \text{ n/cm}^2$ on the 1N547, $5 \times 10^{11} \text{ n/cm}^2$ on the 1N2539, and $2 \times 10^{11} \text{ n/cm}^2$ on the GE-90 is reached. It is also quite apparent that when the lithium hydride shield was removed the increase in leakage was substantial. This was caused by the increased neutron and gamma rates.

In Figure 3-8 the reverse leakage current versus neutron flux for the GE-90, a temporary trend toward higher leakage current is first observed at an exposure of approximately 2×10^{11} n/cm². A shift change occurred at the time where the reactor power was decreased to zero. Following startup, this trend did not continue since it was probably an ionization buildup.

The diodes and SCR's were tested during both the 160°F and 100°F runs on the Automatic Component Measuring System as indicated in the Experimental Design Manual with the following exceptions:

(1) In Figure 3–16 of the Experimental Design Manual, there is a sneak circuit which allows part of the cathode potential lead to draw current. The sneak circuit was detected after the 160°F test was completed. Additional relays were added to the basic system of Figure 3–16 to eliminate it for the 100°F test.

- (2) During the first part of the 160°F test the reverse leakage of the diodes, as read across the current shunts in Figure 3-16 of the Experimental Design Manual, was high. The reason was that the constant current supply was not perfectly isolated from ground. This condition was corrected by moving the normally open contact of .K5 to the shunt lead of the constant current supply, rather than as shown in Figure 3-16.
- (3) The indicated reverse leakage was further reduced by grounding the end of the constant voltage supply that ties to the shunts thus using the grounded shields as guard circuit for the measurements.
- (4) The constant voltage supply in Figure 3–16 of the Experimental Design Manual actually consisted of the programmable supply indicated and also a 240 volt constant voltage supply which was automatically switched in series when higher voltages were required.

Near the beginning of the 100°F test, a faulty switching circuit caused the 240 volt supply to be inadvertently switched in series when it was not desired, thus applying 240 volts in excess of the nominal test values to the 1N547's, 1N2539's, and the GE-92's. This occurred three or four times for each test condition for each diode, before the malfunction was detected.

The 1N547's, which are rated at 600 volts, and the 1N2539's, which are rated at 400 volts, were therefore tested at nominal values of 260, 290, and 310 volts rather than at 20, 50, and 70 volts. A decision was made at this point to conduct the remainder of the test at these new test values. The new values began at an accumulated exposure of 1.6×10^{11} n/cm² and before any apparent change in the diode characteristics had occurred.

The GE-92's, which are rated at 200 peak inverse volts and have an avalanche breakdown somewhere between 250 volts and 550 volts, were tested at 290, 340 and 440 volts during the period of malfunction. One of the GE-92's avalanched under these conditions. The GE-92's, being in a slightly higher flux, had been exposed to about 1.9×10^{11} n/cm² at this time.

With the stated exceptions, the circuitry for the diode and SCR components performed its job well. In almost all cases the test voltages and test currents were within a few percent of the nominal values of Table 3-2 in the Experimental Design Manual. Reverse leakage currents less than 10⁻⁷ amperes were not detectable because of cable noise.

The 400 cycle excitation to the components sometimes generated voltages in the subassemblies which adversely affected their operation (particularly the SCR units) It became necessary to remove 400 cycle excitation from the components for extended periods of time in order to make measurements on the subassemblies. Excitation was on approximately 70% of the time.

The error introduced by the sneak circuits was calculated on the basis of approximate cable resistance, and is tabulated as follows:

Diode	Run l Irrad.	Run I Control	Run 2 Irrad.	Run 2 Control	Run 3 Irrad.	Run 3 Control	Error Volts/Amp
GE-90	.0009	.00003	.009	.0003	.018	.0006	.18 Irrad.
							.006 Control
1N547	.008	.005	.016	.001	.02	.0015	.16 Irrad.
							.01 Control
IN2539	.008	.005	.016	.001	.02	.0015	.16 Irrad.
							.01 Control
GE-91	.01	.001	.1	.01	.2	.02	.08 Irrad.
							.008 Control
1N3888	.02	.005	.16	.04	.3	.08	.08 Irrad.
							.02 Control
1N3878	.02	.005	.16	.04	.3	.08	.08 Irrad.
							.02 Control
1N2592	.02	.005	.16	.04	.3	.08	.08 Irrad.
							.02 Control
2N1778	.02	.005	.16	.04	.3	.08	.08 Irrad.
							.02 Control
GE-92	.2	.02	.5	.05	.6	.06	.08 Irrad.
							.008 Control

Values are probable order of magnitude in volts.

The values tabulated in the results do not attempt to correct for this error, because the error tabulation is not of sufficient accuracy. The values given are approximate and most are insignificant.

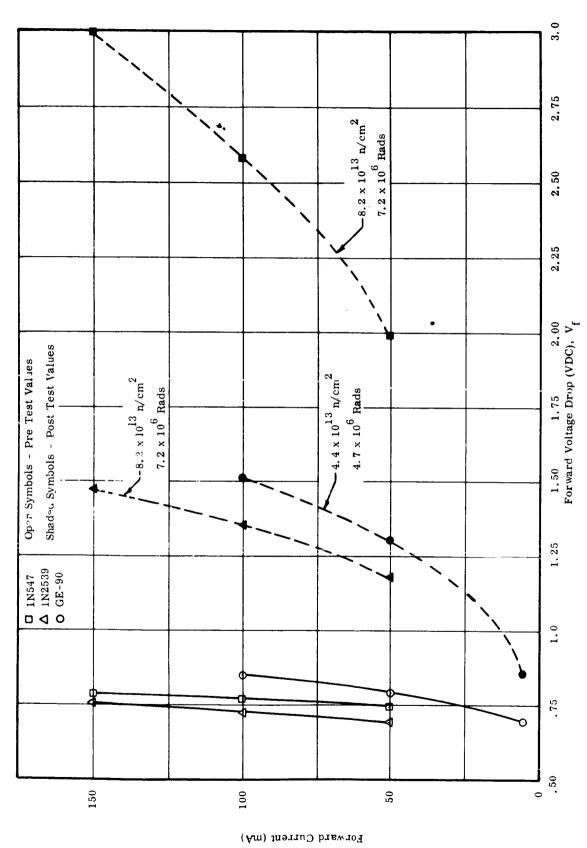


FIGURE 3-1 FORWARD CHARACTERISTICS - LOW CURRENT DIODES, PRE AND POST MEASUREMENTS MADE AT LABORATORY, 100°F

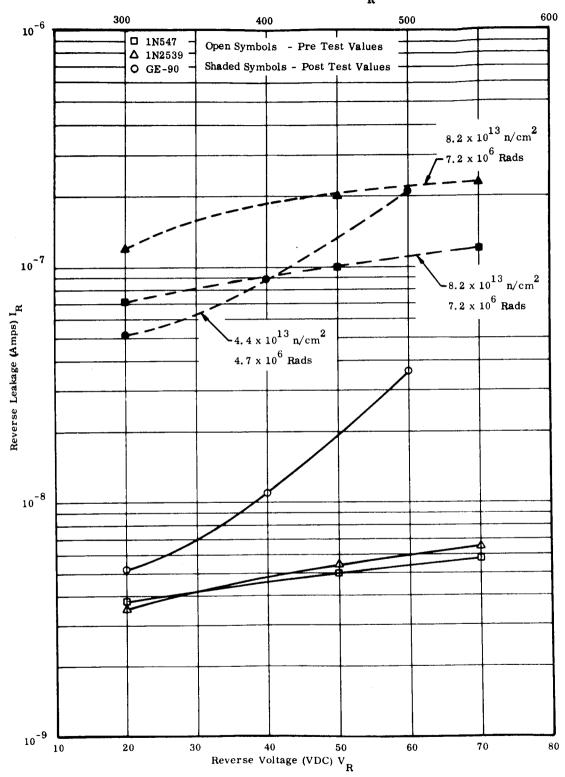
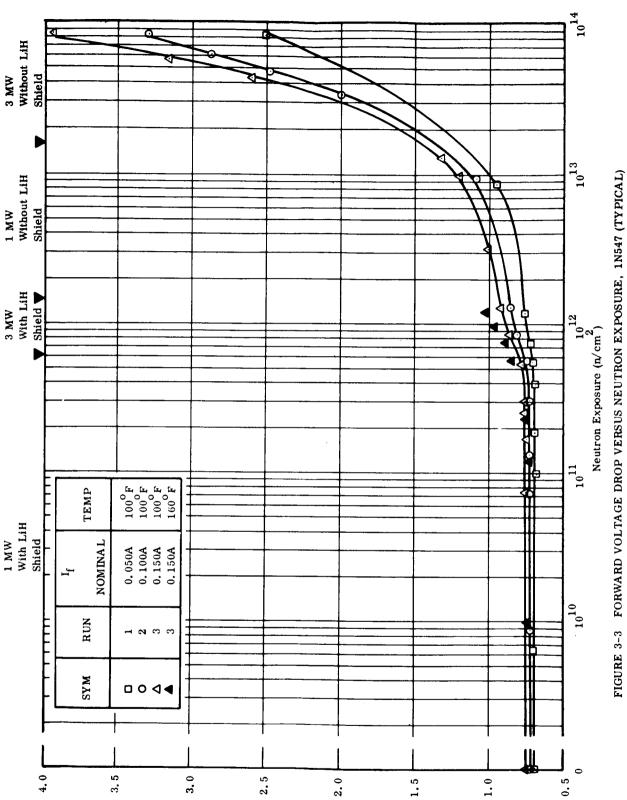


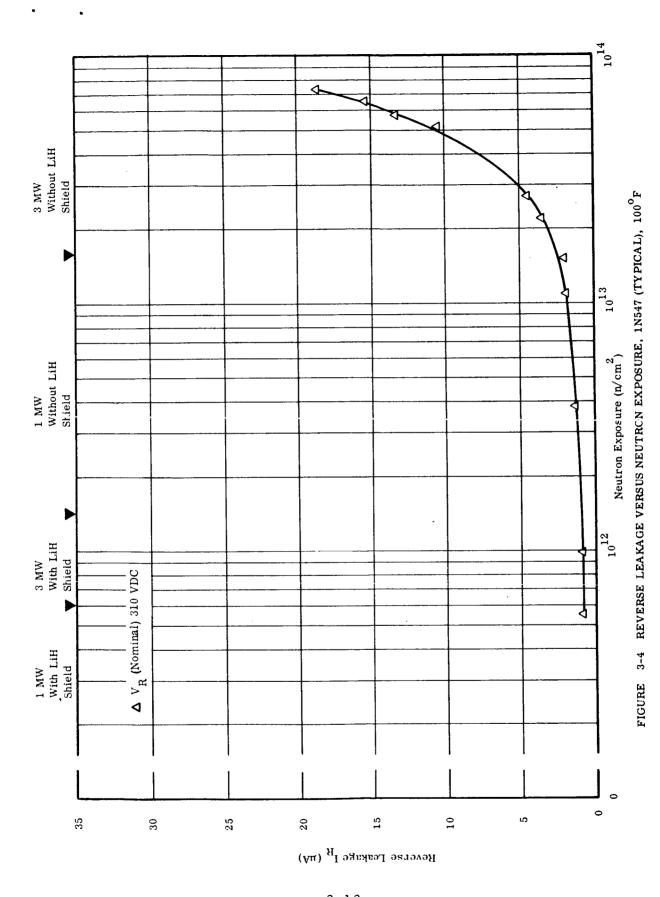
FIGURE 3-2 REVERSE CHARACTERISTICS - LOW CURRENT DIODES, PRE AND POST MEASUREMENTS MADE AT LABORATORY, 100° F

TABLE 3-1 DIODE CHARACTERISTICS, PRE AND POST MEASUREMENTS AT LABORATORY IN2539

ţs	Dio	Diode	Pre		V _f at I _f			IR at VR	
϶Ţ	lde	ldentification	Post	0.050A	0.100A	0.150A	20 VDC	50 VDC	70 VDC
			Pre	969.0	0.728	0.751	3.6 (-9)	5.4 (-9)	6.4 (-9)
		D2-1	Post	1,181	1.356	1.475	1.2 (-7)	2.0 (-7)	2.3 (-7)
	L	C C	Pre	0.715	0.744	0.762	5.4 (-9)	9.4 (-9)	1.2 (-8)
	pə.	D2-2	Post	1.085	1.228	1.325	1.2 (-7)	1.8 (-7)	2.2 (-7)
4	pibr		Pre	0.709	0.742	0.766	6.5 (-9)	9.5 (-9)	1.1 (-8)
000	וייי	D2-3	Post	2.237	2.615	2.915	1.6 (-7)	2.5 (-7)	2.9 (-7)
l	L		Pre	0.713	0.743	0.762	9.8 (-9)	1.5 (-9)	1.9 (-8)
		D2-4	Post	1.567	1.847	2.045	1.3 (-7)	2.0 (-7)	2.4 (-7)
<u></u> _			Pre	0.718	0.747	0.765	7.2 (-9)	9.6 (-9)	1.0 (-8)
	lost	D2-5	Post	0.712	0.738	0.754	4.4 (-9)	9.6 (-9)	1.3 (-8)
	Con		Pre	0.713	0.741	0.758	3.9 (-9)	9.2 (-9)	1.3 (-8)
		D2-6	Post	0.715	0.742	0.759	7.0 (-9)	9.0 (-9)	1.0 (-8)
	р	D2-7	Post	0.714	0.761	0.750	1.5 (-8)	2.4 (-8)	2.8 (-8)
	ətpi	D2-8	Post	0.675	0.717	0.743	2.2 (-8)	3.4 (-8)	4.C (-8)
ا ا	rrad	D2-9	Post	0.697	0.746	0.77.1	1.6 (-8)	2.5 (-8)	3.0 (-8)
 091	1	D2-10	Post	0.671	0.713	0.738	1.7 (-8)	2.5 (-8)	3.0 (-8)
	lottr	D2-11	Post	0.709	0.737	0.755	3.2 (-7)	5.3 (-9)	6.2 (-9)
	Сог	D2-12	Post	0.706	0.734	0.756	2.0 (-7)	3.1 (-9)	3.7 (-9)


5.8 (-9) 3.6 (-9) 3.9 (-9) 1.2 (-7) 4.1 (-9) 1.3 (-7) 3.2 (-9) 3.3 (-9) 1.6 (-8) 8.0 (-9) 5.2 (-7) 4.6 (-9) .5 (-8) 70 VDC DIODE CHARACTERISTICS, PRE AND POST MEASUREMENTS AT LABORATORY IN547 I_R at <_R 1.2 (-8) 4.0 (-9) 1.2 (-8) 7.3 (-9) 5.0 (-9) 3.0 (-9) 3.1 (-9) 1.0 (-7) 3.1 (-9) 1.1 (-7) 2.7 (-9) 4.6 (-9) 2.9 (-9) 1.4 (-8) 4.7 (-9) 1.0 (-7) 1.0 (-7) 50 VDC 2.2 (-9) 7.8 (-9) 3.6 (-9) 1,8 (-9) 3.5 (-9) 3.1 (-9) 8.8 (-9) 1.5 (-9) 5.8 (-9) 1.9 (-9) 7.6 (-9) 6.5 (-8) 8.4 (-9) 3.8 (-9) 7.1 (-8) 1.9 (-9) 6.8 (-8) 7.3 (-8) 20 VDC 0.150A 1,045 0.794 0.778 .055 1,128 0.788 3.370 4.450 0.786 4.670 0.802 0.792 0.787 0.780 1.074 0.786 3.025 0.787 0.100A V_f at I_f 1.016 1 ,065 0.775 0.992 0.988 3.910 3,665 0.763 0.769 2.580 2,865 0.766 0.767 0.781 0.772 0.767 0.771 0.050A 0.740 0.923 0.960 0.732 2.240 0.735 2.995 0.742 0.739 0.734 0.732 0.905 0.901 0.732 2.880 1.992 0.743 0.741 Post Post Post Post Post Post Post Pre or Post Post Post Post Post Post Pre Pre Pre Pre Pre Pre TABLE 3-2 Diode Identification D5-12 D5-10 D5-11 D5-5 D5-8 D5-9 D5-2 D5-3 D5-4 D5-6 D5-7 D5-1 Irradiated Control Control Irradiated 190₀ E Test 100₀ E

Test	Gamma Dose (Rads)	Neutron Exposure (n/cm ²)
100° F	7.2 (6)	8.2 (13)
160° F	4.4 (6)	1.2 (12)


TABLE 3-3 DIODE CHARACTERISTICS, PRE AND POST MEASUREMENTS AT LABORATORY GE-90

		TARIF 3-3			JUNE AND ALVE	CHARACLERISILOS, PRE AIVO POSI MEASONEMENTO	ייין ואין כייין והייים		
	Diode	4	Pre		V _f at I _f			IR at VR	
lesT	Iden	Identification	or Post	0.005A	0.050A	0.100A	300 VDC	400 VDC	500 VDC
1			Pre	0.697	0.791	0.815	5.2 (-9)	1.1 (-8)	3.6 (-8)
		D6-1	Post	0.814	1.305	1,515	5.2 (-8)	8-9 (-8)	2.1 (-7)
			Pre	0.678	0.776	0.800	4.0 (-9)	8.1 (-6)	2.4 (-8)
	pa	D6-2	Post	0.772	1.277	1.485	5.9 (-8)	1.0 (-7)	2.8 (-7)
-	to ib		Pre	0.658	0.763	0.791	2.2 (-9)	3.6 (-9)	8.7 (-9)
0 ₀ E	וונסמ	D6-3	Post	0.669	1.008	1.127	5.4 (-8)	8.6 (-8)	1.8 (-7)
01			Pre	0.686	0.798	0.841	1.4 (-9)	2.2 (-9)	4.8 (-9)
		D6-4	Post	0,757	1.220	1.410	5.0 (-8)	8.4 (-8)	1.8 (-8)
	1		Pre	0.690	0.781	0.802	3.5 (-9)	7.9 (-9)	6.5 (-8)
	loı	D6-5	Post	0.695	0.775	0.804	3.9 (-9)	1.1 (-8)	1.2 (-6)
	tno		Pre	0.682	0.779	0.810	2.7 (-9)	4.8 (-9)	1.1 (-8)
)	9-9 0	Post	0.680	0.776	0.825	2.7 (-9)	5.1 (-9)	1.1 (-8)
		D6-7	Post	0.656	0.795	0.840	5.0 (-9)	8.8 (-9)	2.1 (-8)
	pətc	D9-8	Post	0.633	0.659	0.797	4.6 (-8)	9.9 (-8)	2.6 (-7)
4	ibor	D6-9	Post	0.636	0.764	0.804	1.6 (-8)	3.1 (-8)	7.1 (-8)
091	4	D6-10	Post	0.645	0.779	0.831	5.6 (-9)	9.1 (-9)	2.0 (-8)
	lon	D6-11	Post	0.700	0.789	0.810	6.6 (-10)	1.1 (-9)	2.6 (-9)
	uo⊃	D6-12	Post	0.692	0.792	0.819	4.2 (-8)	9.3 (-8)	8.4 (-7)
	1				(2			

Test	Gamma Dose (Rads)	Neutron Exposure (n/cm ²)
100° F	4.7 (6)	4.40 (13)
160° F	2.9 (6)	9.34 (11)

Forward Voltage Drop (VDC)

3-13

TABLE 3-4 RUN 1, FORWARD VOLTAGE CHARACTERISTICS (100° F) 1N547

			T							-														 	 	
Z	Exposure	(n/cm^2)		=	(2)	6.4 (9)	9.0 (10)	1.6 (11)	1.9 (11)	2.6 (11)	3.1 (11)	3.9 (11)	4.8 (11)	5.5 (11)	6.1 (11)	6.6 (11)	7.5 (11)	8.6 (11)	1.1 (12)	1.2 (12)	1.3 (12)	8.7 (12)	8.2 (13)			
		4		0.708	0.693	0.670	0.683	0.684	0.695	0.692	969.0	0.704	0.714	0.734	0.710	0.724	0.766	0.792	0.795	0.810	0.829	1.080	3.332			
	d Diodes			0.701	0.684	0.684	0.684	0.686	0.690	0.693	0.692	0.706	0.715	0.735	0.720	0.720	0.764	0.791	0.771	0.803	0.820	1.056	3.289			
Forward Voltage Drop (VDC)	Irradiated	2 *	1	0.713	0.700	969.0	0.681	0.682	0.689	0.684	0.688	0.690	0.694	0.713	0.697	0.697	0.730	0.756	0.746	0.755	0.769	0.949	2.500		-	
Forward Volta		_		0.713	0.701	0.697	0.680	0.677	0.684	9.676	0.679	0.682	0.680	0.702	0.674	0.682	0.720	0.740	0.730	0.735	0.750	906.0	2.208			
	1 Diodes	9		0.708	0.693	0.690	0.694	0.694	0.690	0.694	0.690	0.691	0.684	0.692	0.676	0.680	0.692	0.699	0.684	0.683	0.681	0.685	0.694			
	Control	5		0.712	669.0	0.697	0.699	0.700	0.702	0.699	0.690	0.698	0.690	0.698	0.681	0.683	0.691	0,705	0.689	0.689	0.681	0.689	669.0			
Forward	Current	(Amps)	1	0.0505	0.0507	0.0507	0.0507	0.0508	0.0507	0.0508	0.0507	0.0506	0.0507	0.0507	0.0507	0.0507	0.0507	0.0508	0.0508	0.0507	0.0507	0.0508	0.0504			

(1) Pre Test at Ambient Temperature (2) Pre Test at $100^{\rm o}$ F

TABLE 3-5 RUN 2, FORWARD VOLTAGE CHARACTERISTICS (100° F) 1N547

			г								_							_					 	 	
Neutron	Exposure	(n/cm ²)	(1)	(·)	(2)	(E)	1.3 (11)	_	2.7 (11)	_	3.5 (11)	5	/		_	9	ფ	4	_	8	6.2 (13)	8.2 (13)			
		4	0.736	0 726	0.724	0.734	0.734	0.740	0.749	0.750	0.753	0.770	0.770	0.810	0.866	0.896	0.935	1.250	2.520	3,194	3,756	4.390			
	ed Diodes	3	0.733	0 725	0.724	0.735	0.730	0.743	0.750	0.750	0.754	0.770	0.770	0.807	0.861	0.893	0.924	1.224	2.457	3.129	3,689	4.307	 -		
Forward Voltage Drcp (VDC)	Irradiated	2 *	0.740	0.730	0.728	0.730	0.721	0.733	0.730	0,734	0.734	0.747	0,740	0.775	0.826	0.849	0.865	160'1	1,989	2,474	2,873	3,306			
Forward Volte			0.737	0.730	0.727	0.722	0.720	0.723	0.726	0,725	0.724	0.734	0.729	0.760	0.807	0.830	0.839	1.041	1.811	2.231	2.576	2.937			
	l Diodes	9			0.729																				
	Control	5	0.750	0.739	0.740	0.745	0.741	0.741	0.740	0.737	0.736	0.734	0.725	0.735	0.748	0.753	0.730	0.736	0.735	0.736	0.735	0.735			
Forward	Current	(Amps)	0.102	_	0.102	_		0.102	_	_	_	_			_	_	_	_	0.102	_	0.102		• "		

(1) Pre Test at Ambient Temperature (2) Pre Test at 100° F

TABLE 3-6 RUN 3, FORWARD VOLTAGE CHARACTERISTICS (100° F) 1N547

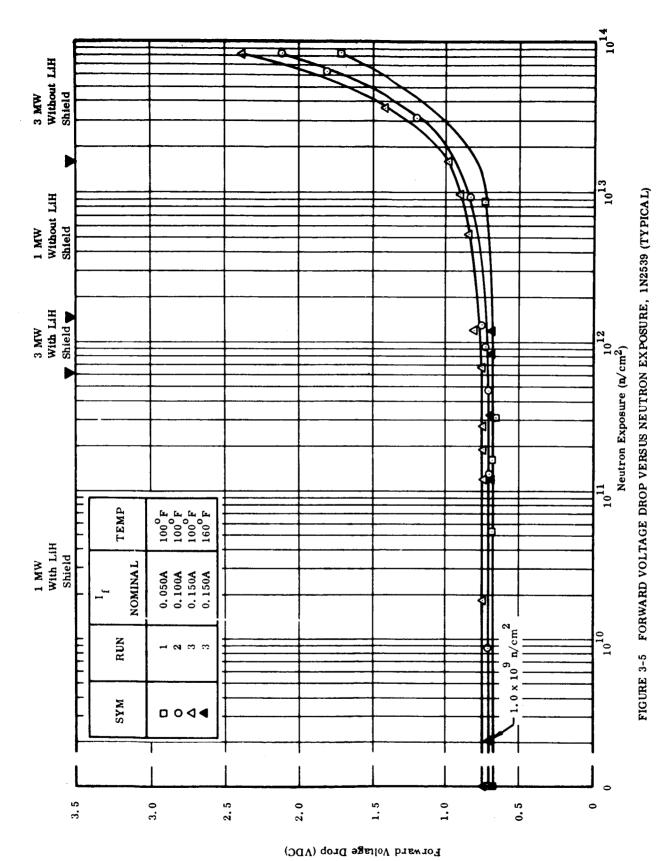
			1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -				
ō ≥ ō				לאון אל			
Current	Control	l Diodes		Irradiated	d Diodes		Exposure 2
(Amps)	5	9	_	2 *	3	4	(n/cm ²)
	0 772	072 0	7.	0 750	0 754	0 754	(1)
	c//.o	70/.0	0.,0	00	to / • •	2	
	0.764	0.750	0.748	0.750	0.746	0.748	(2)
	0.769	0.754	0.741	0.751	0.759	0.757	7.5 (10)
	0.763	0.750	0.740	0.748	0,760	0.758	1.7 (11)
	0.763	0.750	0.744	0.755	0.773	0.770	2.5 (11)
	0.760	0.749	0.750	0.760	0.780	0.776	3.0 (11)
	0.761	0.741	0.754	0.764	0.785	0.785	3.5 (11)
	0.757	0.740	0.758	0.774	0.799	0.790	4.4 (11)
	0.750	0.740	0.770	0.783	0.814	0.813	5.4 (11)
	0,760	0.749	0.805	0.820	0.859	0,860	=
	0.764	0.749	0.820	0.847	0.893	0.896	.7 (1
	0,760	0.747	0.855	0.879	0.920	0.938	1.0 (12)
	0,760	0.740	0.870	0.896	0.959	0.965	=
	0.750	0.745	0.891	0.925	0.995	1.005	2
	0.765	0.750	0,991	1.001	1.120	1.131	\Box
	0.752	0.748	1.140	1,200	1,350	1,300	5
0.153	0,760	0.746	1.248	1,325	1.510	1.554	1.3 (13)
	0.762	0.743	2,380	2.638	3.336	3,415	.3(
	0,760	0.746	2.850	3.173	•	•	=
	0.764	0.750	3.488	3.940	5.099	5.221	.2 (1
						-	
			and the				
			on an				
					4		

(1) Pre Test at Ambient Temperature(2) Pre Test at 100° F

TABLE 3-7 RUN 3, FORWARD VOLTAGE CHARACTERISTICS (160° F) 1N547

Neutron	Exposure	(n/cm ²)	(1)	_	_	5.7 (11)	7~	7.4 (11)	$\overline{}$	\sim	
		10	0.737	0.740	0.734	0.849	0.877	0.870	0.955	0.990	
	Irradiated Diodes	6	0.739	0.754	0.730	0.891	0.927	0.927	1.026	1.079	
Forward Voltage Drop (VDC)	Irradiate	ω	0.737	0.739	0.754	0.850	0.878	0.874	0.959	0.998	
Forward Volta		2	0.743	0./40	0.753	0.856	0.887	0.883	0.975	1.020	
	Control Diodes	12	0.747	0.751	0.720	0.762	0.744	0.730	0.747	0.728	
	Contro	=	0.740	0./33	0.7.00	0.745	0.726	0.712	0.729	0.710	
Forward	Current	(Amps)	0.142	0.153	0.153	0.153	0.153	0.153	0.153	0.153	

(1) Pre Test at Ambient Temperature


RUN 4, REVERSE LEAKAGE CHARACTERISTICS (100° F) 1N547 TABLE 3-8

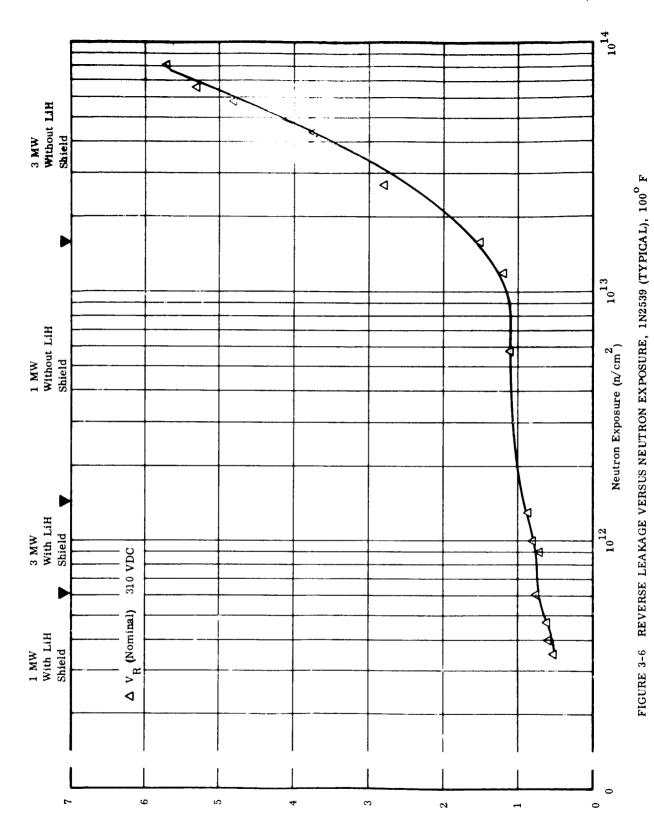

Neutron)) , ,	Exposure 2	(n/cm_)	3.4 (11)	_	_	_	_	(11) 0.9	_	_		1.0 (13) 8.2 (13)
			4	0.452	0.442	0,509	0.402	0,602	0.639	0.612	0.592	0.712	10.559
		d Diodes	က	0.549	0,602	0.572	0.532	0.731	0.822	0.792	0.712	0.771	1.504
(V ::) O = 2.	kage (# 4)	Irradiated Diodes	2	0.452	0 492	0.532	0.432	0.581	0.631	0.642	0.592	0.722	1.232 8.739
	Keverse Leakage (#A)		-	0.539	765 0	0.5%	0.512	0.652	0.675	0.702	0.632	0.831	1.338 8.801
		l Diodes	9	0.312	0 330	0.332	0.034	0.233	0.402	0.332	0.302	0.332	0.321
		Control D	5	0.331		0.402	0.372	0.271	0.342	0.372	0.282	0.361	0.299
	Reverse	Voltage	(VDC)	263 8	0,000	263.9	264.0	263.4	263.7	263.7	263.8	263.7	263.6

TABLE 3-9 RUN 5, REVERSE LEAKAGE CHARACTERISTICS (100° F) 1N547

Neutron	Exposure	(n/cm²)	3.8 (11)	4.0 (11)	5.1 (11)	5.4 (11)	5.8 (11)	7.0 (11)	9.0 (11)	1.0 (12)	1.1 (12)	1.1 (13)	8.2 (13)
		4	0.499	0.389	0.503	809.0	0.642	0.672	0.652	ı	0.782	1.421	11.639
	Diodes	3	0.582	0.611	0.572	0.822	0.801	0.832	ı	0.902	0.972	1.672	13.069
kage (µA)	Irradiated	2	0.452	0,511	0.472	0.601	0.612	0.619	0.604	0.721	0.772	1.351	9.701
Reverse Leakage (µA)		1	0.481	0.572	0.519	0.639	0.771	0.812	0.772	0.872	0.932	1.411	669.6
	Control Diodes	9	0,312	0,302	0.301	0.412	0.412	0.352	0.332	0,301	0.348	0.352) }
	Contro	5	0.301	0.342	0.322	0.362	0.442	0.412	0.369	0.402	0.402	0.302	0.309
Reverse	Voltage	(VDC)	294.3	294 4	293.8	294.2	294.2	294.1	294.0	294.2	294.2	294.1	293.8

5.6 (11) 1.0 (12) 3.9 (12) 1.2 (13) 2.2 (13) 2.7 (13) 5.2 (13) 5.8 (13) 7.3 (13) Exposure Veutron (n/cm^2) 0.712 0.801 1.001 1.502 1.701 3.042 4.021 9.112 11.004 13.469 4 RUN 6, REVERSE LEAKAGE CHARACTERISTICS (100° F) IN547 0.801 0.912 1.012 1.201 1.801 2.099 3.512 4.552 13.212 15.489 18.669 က Irradiated Diodes 0.672 0.742 0.838 1.002 1.511 1.601 2.821 3.632 8.352 10.002 Reverse Leakage (µA) 7 0.801 0.822 0.901 1.101 1.702 1.804 3.112 3.911 8.209 10.008 0.432 0.348 0.348 0.358 0.358 0.412 0.412 0.402 0.362 0.362 9 Control Diodes **TABLE 3-10** 0.481 0.312 0.412 0.431 0.441 0.441 0.381 0.442 0.442 9 Voltage Reverse 314.0 314.0 314.0 313.9 313.9 313.9 313.9 (VDC)

Reverse Leakage, I_R (µA)

TABLE 3-11 RUN 1, FORWARD VOLTAGE CHARACTERISTICS (100° F) IN2539

		Forward Volta	Forward Voltage Drop (VDC)			Neutron
Control Dioc	odes		Irradiated	d Diodes		Exposure
5	9		2	3	* 4	(n/cm ²)
	707	0.673	969.0	0.690	0.693	(E)
· 	169	0,000	0.683	0.676	089.0	(2)
	069	0.651	0.89	0.673	0.675	1.2 (10)
0.696 0.697	7	0.668	0,686	0.683	0,681	5.3 (10)
···	_	0.647	0,669	0.668	0,665	9.0 (10)
	က္က	0.659	0.670	0.675	099.0	_
<u>.</u>	2	0.665	0.677	0.683	0.673	
	_	0.657	0,668	0.674	999.0	1.9 (11)
0.684 0.692	~ 1	0.642	0.654	0.670	0.658	_
<u>.</u>		0.653	0.664	0.671	0.663	_
<u>.</u>		0.639	0.648	0.668	0.654	3.1 (11)
		0.651	0.657	0.677	0,660	_
_		0.651	0.654	0.680	099.0	_
0.681 0.681		0.646	0.648	0.679	0.656	_
		0.659	0.655	00.700	0.670	_
<u>.</u>		0.661	0.657	0.706	0.675	$\overline{}$
		0.671	0.665	0.723	0.687	\Box
0		0.630	0.625	0.691	0.655	.1 (1
0		0.675	0.650	•	0.733	8.7 (12)
0.683		1.267	1.144	2.438	1.710	8.2 (13)

(1) Pre Test at Ambient Temperature
(2) Pre Test at 100°F

TABLE 3-12 RUN 2, FORWARD VOLTAGE CHARACTERISTICS (100° F) IN2539

Control Diodes Forward Voltage Drop (VDC) Current Control Diodes Irradiated Diodes		IABLE 3-12	- 1	אייאאיי יי	יסר כוואואכוו	AUN 4, FORWARD VOLIAGE CITAINACIENISTICS (190 1) 114505	/ 114200/	
Control Diodes	Forward			Forward Voltag	ge Drop (VDC)			Neutron
5 6 1 2 3 0.741 0.744 0.716 0.733 0.733 0.720 0.727 0.729 0.704 0.720 0.720 0.728 0.730 0.704 0.725 0.720 0.728 0.730 0.705 0.714 0.725 0.0 0.728 0.730 0.704 0.725 0.725 0.725 0.729 0.704 0.714 0.725 0.724 0.724 0.720 0.730 0.704 0.724 0.724 0.724 0.720 0.728 0.689 0.704 0.724 0.724 0.724 0.729 0.693 0.700 0.734 0.730 0.720 0.729 0.693 0.689 0.724 0.725 0.720 0.721 0.693 0.689 0.724 0.725 0.720 0.722 0.729 0.693 0.745 0.725 0.720 0.723 0.720 0.72	Current	Contro	ä		Irradiate			Exposure
0.741 0.744 0.716 0.733 0.720 0.727 0.729 0.704 0.704 0.720 0.729 0.704 0.704 0.720 0.720 0.729 0.704 0.704 0.725 0.000 0.728 0.730 0.705 0.714 0.725 0.000 0.729 0.730 0.704 0.724 0.724 0.724 0.720 0.729 0.689 0.704 0.724 0.724 0.724 0.720 0.729 0.699 0.700 0.724 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.726 0.726 0.726 0.726	(Amps)	5	9		2	က	1 1	(n/cm ²)
0.727 0.729 0.706 0.733 0.720		0 741	777	, , ,	723	722	0 733	- (1)
0.727 0.729 0.706 0.703 0.720	0.0	0.741	0./44	0./.0	0./33	0.733	0.730	<u> </u>
0.722 0.729 0.704 0.704 0.720	1.101	0.727	0.729	0.706	0.733	0.720	0.720	
0.729 0.730 0.705 0.720 0.725 0.725 0.728 0.730 0.704 0.725 0.725 0.725 0.728 0.730 0.699 0.704 0.724 0.724 0.720 0.728 0.697 0.702 0.724 0.724 0.724 0.728 0.697 0.703 0.724 0.724 0.723 0.724 0.695 0.692 0.724 0.724 0.720 0.724 0.695 0.692 0.726 0.726 0.710 0.719 0.695 0.692 0.726 0.726 0.720 0.729 0.700 0.693 0.726 0.726 0.720 0.720 0.720 0.745 0.745 0.745 0.720 0.720 0.720 0.720 0.745 0.745 0.745 0.720 0.720 0.720 0.720 0.725 0.956 0.725 0.956 0.721 0.722 0.723 0.724 0.726 0.956 0.956 0.956 0.956 0.956 0.	0.101	0.722	0.729	0.704	0.704	0.720	0.719	8.6 (9)
0.728 0.730 0.705 0.714 0.725 0.725 0.728 0.730 0.704 0.710 0.725 0.700 0.727 0.730 0.699 0.704 0.724 0.704 0.720 0.728 0.697 0.702 0.724 0. 0.724 0.728 0.697 0.703 0.724 0. 0.723 0.724 0.695 0.692 0.730 0. 0.720 0.724 0.695 0.692 0.726 0. 0.721 0.725 0.695 0.689 0.745 0. 0.720 0.730 0.700 0.689 0.745 0. 0.720 0.726 0.710 0.689 0.745 0. 0.720 0.726 0.710 0.695 0.745 0. 0.720 0.724 0.700 0.695 0.745 0. 0.720 0.724 0.700 0.720 0.745 0. 0.725 0.726 0.720 0.720 0.720 0.720 0.720	0.101	0.729	0.730	0,705	0.720	0.725	0.715	7.3 (10)
0.728 0.730 0.704 0.710 0.725 0. 0.727 0.730 0.699 0.704 0.724 0. 0.720 0.729 0.698 0.702 0.724 0. 0.726 0.728 0.697 0.700 0.724 0. 0.724 0.721 0.700 0.730 0.730 0.730 0.721 0.724 0.695 0.692 0.726 0. 0.720 0.730 0.695 0.692 0.726 0. 0.720 0.730 0.700 0.689 0.745 0. 0.720 0.726 0.700 0.689 0.745 0. 0.720 0.726 0.710 0.689 0.745 0. 0.720 0.724 0.761 0.789 0.789 0.789 0.789 0.725 0.727 0.729 0.956 0.956 0.956 0.956 0.721 0.728 1.301 1.169 2.540 1. 0.721 0.730 1.499 1.391 3.007 2.540	0,101	0.728	0.730	0.705	0.714	0.725	0,713	1.3 (11)
0.727 0.730 0.699 0.704 0.724 0.724 0.726 0.728 0.698 0.702 0.724 0.726 0.728 0.698 0.702 0.724 0.724 0.728 0.697 0.700 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.695 0.695 0.726 0.726 0.727 0.725 0.695 0.695 0.689 0.725 0.726 0.726 0.720 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.727 0.726 0.729 0.695 0.725 0.727 0.726 0.729 0.729 0.956 0.725 0.725 0.727 0.956 0.871 1.565 1.005 0.721 0.729 1.005 0.966 1.699 1.301 1.169 2.540 1.301 0.721 0.730 1.499 1.391 3.007 2.	0.101	0.728	0.730	0.704	0.710	0.725	0.710	1.9 (11)
0.720 0.729 0.698 0.702 0.724 0. 0.726 0.728 0.697 0.700 0.724 0. 0.724 0.721 0.700 0.730 0.730 0. 0.723 0.724 0.695 0.692 0.726 0. 0.721 0.725 0.695 0.689 0.745 0. 0.720 0.726 0.700 0.689 0.745 0. 0.720 0.726 0.700 0.689 0.761 0. 0.720 0.726 0.700 0.695 0.761 0. 0.720 0.720 0.721 0.725 0.761 0. 0.725 0.723 0.761 0.729 0.956 0.	0.102	0.727	0.730	0.699	0.704	0.724	0.708	2.5 (11)
0.726 0.728 0.697 0.700 0.724 0. 0.724 0.721 0.700 0.730 0.730 0. 0.723 0.724 0.695 0.692 0.726 0. 0.710 0.719 0.693 0.689 0.725 0. 0.721 0.725 0.700 0.689 0.745 0. 0.720 0.726 0.770 0.689 0.745 0. 0.720 0.724 0.770 0.689 0.761 0. 0.720 0.724 0.771 0.695 0.761 0. 0.725 0.725 0.729 0.729 0.795 0. 0.725 0.729 0.729 0.956 0.956 0.956 0.956 0.721 0.728 1.065 0.966 1.699 1. 0.721 0.730 1.499 1.391 3.007 2.540 1.	0.101	0.720	0.729	869.0	0.702	0.724	0.707	3.0 (11)
0.724 0.721 0.700 0.703 0.726 0.726 0.092 0.726 0.0726 <td< td=""><td>0.101</td><td>0.726</td><td>0.728</td><td>0.697</td><td>0.700</td><td>0.724</td><td>0.706</td><td>3.1 (11)</td></td<>	0.101	0.726	0.728	0.697	0.700	0.724	0.706	3.1 (11)
0.723 0.724 0.693 0.692 0.726 0 0.710 0.719 0.693 0.692 0.722 0 0.721 0.725 0.695 0.689 0.745 0 0.720 0.730 0.700 0.689 0.745 0 0.720 0.724 0.701 0.695 0.761 0 0.720 0.723 0.761 0.729 0.795 0 0.725 0.729 1.065 0.966 1.699 1 0.721 0.728 1.301 1.169 2.540 1 0.721 0.730 1.499 1.391 3.007 2	0.101	0.724	0.721	0.700	0.703	0.730	0.709	3.6 (11)
0.710 0.719 0.693 0.692 0.722 0.725 0.721 0.725 0.695 0.689 0.745 0.000 0.720 0.730 0.700 0.689 0.761 0.000 0.720 0.724 0.700 0.695 0.761 0.761 0.720 0.723 0.761 0.729 0.795 0.950 0.950 0.725 0.729 1.065 0.966 1.699 1.699 0.721 0.728 1.301 1.169 2.540 1. 0.721 0.730 1.499 1.391 3.007 2.	0.102	0.723	0.724	0.695	0.692	0.726	0.704	4.0 (11)
0.721 0.725 0.695 0.689 0.745 0.720 0.730 0.700 0.689 0.761 0.720 0.724 0.729 0.795 0.725 0.727 0.956 0.950 0.725 0.729 1.065 0.966 1.699 0.721 0.728 1.301 1.169 2.540 0.721 0.730 1.499 1.391 3.007	0.101	0.710	0.719	0.693	0.692	0.722	0.704	4.8 (11)
0.720 0.730 0.700 0.689 0.761 0.720 0.726 0.710 0.695 0.795 0.720 0.723 0.761 0.729 0.950 0.725 0.727 0.956 0.871 1.565 0.725 0.729 1.065 0.966 1.699 0.721 0.728 1.301 1.169 2.540 0.721 0.730 1.499 1.391 3.007	0.101	0.721	0.725	0.695	0.689	0.745	0.710	7.3 (11)
0.720 0.726 0.710 0.695 0.795 0.720 0.723 0.761 0.729 0.950 0.725 0.727 0.956 0.871 1.565 0.726 0.729 1.065 0.966 1.699 0.721 0.728 1.301 1.169 2.540 0.721 0.730 1.499 1.391 3.007	0.101	0.720	0.730	0.700	0.689	0.761	0.720	9.1 (11)
0.720 0.723 0.729 0.950 0.725 0.727 0.956 0.871 1.565 0.725 0.729 1.065 0.966 1.699 0.721 0.728 1.301 1.169 2.540 0.721 0.730 1.499 1.391 3.007	0.101	0.720	0.726	0.710	0.695	0.795	0.741	디
0.725 0.727 0.956 0.871 1.565 0.725 0.729 1.065 0.966 1.699 0.721 0.728 1.301 1.169 2.540 0.721 0.730 1.499 1.391 3.007	0.102	0.720	0,723	0.761	0.729	0.950	0.832	9.4 (12)
01 0.725 0.729 1.065 0.966 1.699 02 0.721 0.728 1.301 1.169 2.540 1 0.730 1.499 1.391 3.007	0,102	0.725	0.727	0.956	0.871	1.565	1.191	\Box
02 0.721 0.728 1.301 1.169 2.540 1 01 0.721 0.730 1.499 1.391 3.007 2	0.101	0.725	0.729	1.065	0.966	1.699	1.406	\Box
01 0.721 0.730 1.499 1.391 3.007 2	0.102	0.721	0.728	1.301	1.169	2.540	1.815	6.2 (13)
	0.101	0.721	0.730	1.499	1.391	3.007	2.106	8.2 (13)

(1) Pre Test at Ambient Temperature (2) Pre Test at 100 F

TABLE 3-13 RUN 3, FORWARD VOLTAGE CHARACTERISTICS (100° F) IN2539

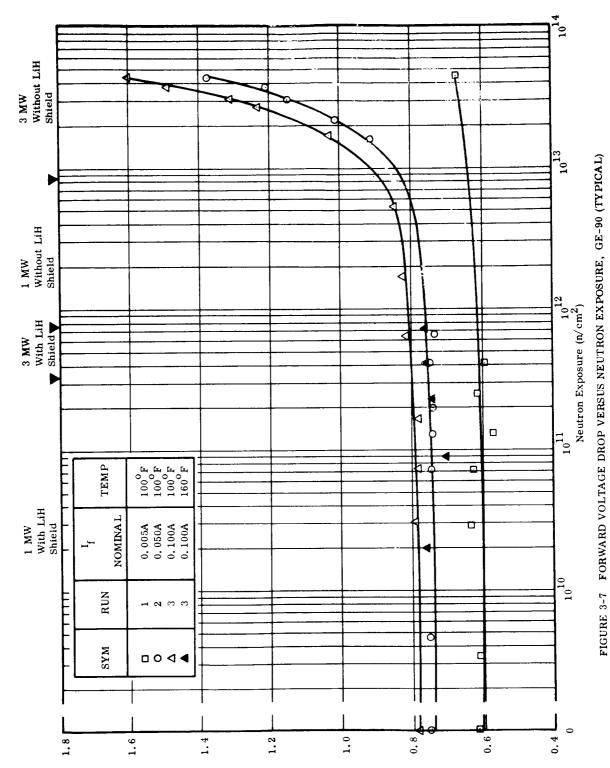
Neutron	Exposure	(n/cm ²)	(1)	(2)	1.8 (10)	1.2 (11)	1.9 (11)	2.7 (11)	3.8 (11)	4.8 (11)	$\overline{}$.9.	8.6 (11)	1.0 (12)	1.1 (11)	1.2 (11)	5.2 (12)	9.9 (12)	1.6 (13)	3.6 (13)	6.4 (13)	8.2 (13)				
		4	0.760	0.749	0.745	0.744	0.740	0.744	0.744	0.731	0.745	0.750	0.761	0.769	0.779	0.800	0.840	0.896	0.971	1.429	2.001	2.377				
	d Diodes	3	0.765	0.753	0.749	0.756	0.759	0.764	0.761	0,760	0.777	0.785	0.800	0.818	0.827	0.856	0.936	1.024	1.155	1.928	2.964	3.437				
Forward Voltage Drop (VDC)	Irradiated	2	0,760	0.749	0.748	0.744	0.741	0.738	0.734	0.724	0.727	0.725	0.732	0.724	0,733	0.755	0.755	0.749	908.0	1.003	1.290	1.400				
Forward Volta			0.745	0,737	0.734	0.735	0.738	0.735	0.734	0.728	0.734	0.735	0.743	0.745	0.750	0.773	0.785	0.809	0,860	1.107	1.456	1.659				
	l Diodes	9	0,769	0.755	0,754	0.755	0,750	0.757	0.750	0.740	0.745	0.755	0.758	0.754	0.754	0.759	0.754	0.755	0.756	0,759	0,750	0.756				
	Control	5	0.765	0.752	0,750	0.750	0.751	0.750	0.750	0.742	0.742	0.750	0.754	0.750	0.749	0.755	0,750	0.750	0.750	0.755	0.750	0.753				
Forward	Current	(Amps)	-		0,153	_	_	_		_	_	_		_	_	_	_	_	_	_	0.153		•			

(1) Pre Test at Ambient Temperature(2) Pre Test at 100°F

TABLE 3-14 RUN 3, FORWARD VOLTAGE CHARACTERISTICS (160° F) IN2539

Neutron	Exposure	(n/cm ²)	(1) 1.0 (9) 1.2 (11) 3.3 (11) 7.8 (11) 1.2 (12)
		*01	0.728 0.697 0.689 0.689 0.670
	J Diodes	6	0.740 0.703 0.688 0.698 0.705 0.706
Forward Voltage Drop (VDC)	Irradiated Diodes	8	0.733 0.702 0.685 0.687 0.666
Forward Voltag		7	0.761 0.720 0.703 0.714 0.721
	Diodes	12	0.743 0.709 0.704 0.715 0.707
	Control	_	0.735 0.704 0.710 0.699
Forward	Current	(Amps)	0.152 0.152 0.152 0.152 0.152

(1) Pre Test at Ambient Temperature


TABLE 3-15 RUN 4, REVERSE LEAKAGE CHARACTERISTICS (100° F) IN2539

Neutron	Exposure	(n/cm ⁻)	3.0 (11)	3.4 (11)	3.9 (11)	4.7 (11)	5.1 (11)	5.6 (11)	6.0 (11)	7.0 (11)	7.8 (11)		1.0 (13)	8.2 (13)	
		4	0.542	0.612	0.638	0.731	0.702	0.822	0.842	0.742	0.704	0.701	1,142	3,532	
	Diodes	3	l	0.537	ı	ı	1	į	ı	ł	l	.882	1,362	4.229	
kage (µA)	Irradiated Diodes	2	0.401	0.479	0.499	. 0.592	0.501	0.692	0.712	0.632	0.625	0.652	0.959	3,007	
Reverse Leakage (µA)			0.503	0.442	0,451	0.602	0.581	0.701	0.672	0.702	0.639	0.681	1,119	3,709	
	Diodes	9	0.332	0.411	0.412	0.411	0.352	0.402	0.432	0.392	0.342	0.301	0,301	0.302	
	Control	5	0 449	0.452	0.501	0.582	0.549	0.602	0.501	0.482	0.432	0.422	0.502	0.384	
Reverse	Voltage	(VDC)	8 876	2,503	263.9	264.0	263.1	263.7	263.8	263.7	263.7	263.7	263.6	263.3	

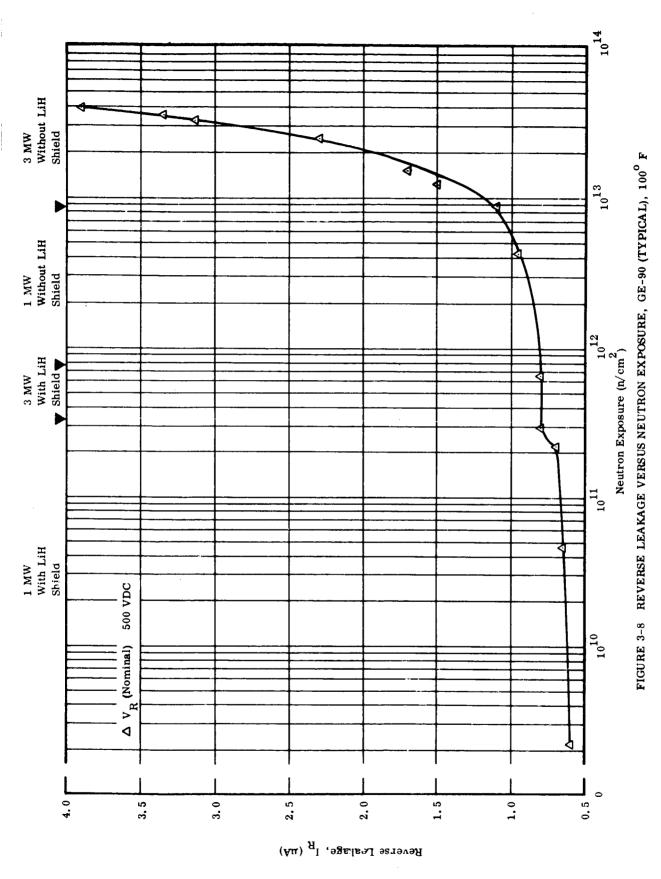

3.4 (11) 3.9 (11) 4.7 (11) 5.1 (11) 5.8 (11) 7.0 (11) 9.0 (11) 1.1 (12) Exposure (n/cm^2) Neutron 0.732 0.701 0.835 0.812 0.902 0.892 0.812 0.812 0.812 0.813 3.819 4 RUN 5, REVERSE LEAKAGE CHARACTERISTICS (100° F) IN2539 က Irradiated Diodes 0.522 0.562 0.563 0.742 0.708 0.602 0.603 0.701 0.751 Reverse Leakage (μ A) 7 0.461 0.575 0.701 0.762 0.762 0.752 0.752 0.763 0.682 0.782 1.162 0.415 0.432 0.421 0.419 0.442 0.432 0.408 0.442 0.482 0.451 9 Control Diodes TABLE 3-16 0.501 0.521 0.612 0.652 0.622 0.505 0.512 0.419 0.462 2 Voltage Reverse 294.3 294.3 294.4 293.9 294.2 294.1 294.1 294.2 (VDC) 294.2 294.1 293.9

TABLE 3-17 RUN 6, REVERSE LEAKAGE CHARACTERISTICS (100° F) IN2539

1 * 2 0.523 0.562 0.602 0.682 0.692 0.782 0.691 0.831 0.787 0.831 0.787 0.844 0.787 0.844 0.792 1.102 0.859 0.813 1.201 1.492 1.342 2.801 2.305

3 742
71.0
4.802
5.312
5.704

Forward Voltage Drop (VDC)

3-31

TABLE 3-18 RUN 1, FORWARD VOLTAGE CHARACTERISTICS (100° F) GE-90

Forward			Forward Voltage Drop (VDC)	ge Drop (VDC)			Neutron
Current	Control	Diodes		Irradiated	d Diodes		Exposure
(Amps)	5	9	*	2	3	4	(n/cm ²)
			l			L	()
0.0052	0.638	0.615	0.635	0.613	0.572	0.625	<u> </u>
0.0052	0.601	0.590	0.617	0.594	0.551	909.0	
0,0052	0,615	0.584	0.611	0.581	0.544	0.599	3.4 (9)
0,0051	0.654	0.634	0.634	0.614	0.592	0.625	2.9 (10)
0,0050	0.653	0.635	0.625	609.0	0.580	0.615	$\overline{}$
0,0058	0,666	0.648	0.638	0.623	0,605	0.626	9.4 (10)
0.0052	0.621	0.593	0.571	0.558	0.520	0.551	1,3 (11)
0.0051	0.654	0.639	0.613	0.599	0.580	0.603	1.5 (11)
0,0051	0.663	0.646	0.628	0.614	0.596	0.615	1.6 (11)
0,0051	0.650	0.634	0.608	0.594	0.575	0.592	2.0 (11)
0,0052	0.623	0.590	0.562	0.547	0.510	0.540	2.1 (11)
0,0051	0.655	0.636	0.614	009.0	0.582	009.0	2.5 (11)
0,0051	0.649	0.630	0.607	0.593	0.575	0.593	=
0,0051	0.650	0.634	0.597	0.585	0.565	0.585	=
0,0050	0.657	0.639	0.506	0.594	0.574	0.590	4.4 (11)
0,0050	0.667	0.601	0.623	0.610	0.588	0.608	5.1 (11)
0.0053	0.593	0.565	0.490	0.485	0.450	0.475	$\overline{}$
0.0053	0.597	0.565	0.490	0.479	0.447	0.473	딕
0.0053	- '0	0.562	0.496	0.485	0.445	0.475	4.7 (12)
0,0050	0.614	0.583	0.664	0.628	0.523	0.610	4.4 (13)
			,				

(1) Pre Test at Ambient Temperature
(2) Pre Test at 100° F

TABLE 3-19 RUN 2, FORWARD VOLTAGE CHARACTERISTICS (100° F) GE-90

Forward			Forward Volta	Forward Voltage Drop (VDC)			Neutron
	Control	1 Diodes		Irradiated	d Diodes		Exposure
	5	9	*	2	3	4	(n/cm ²)
	0.762	0,760	0.755	0.742	0.726	0.746	(1)
	0,750	0.747	0.750	0.731	0.706	0.739	(2)
	0.750	0.740	0.749	0.734	0,701	0.738	4.6 (9)
	0.758	0.755	0.760	0.744	0.728	0.746	3.0 (10)
	0.751	0.740	0.745	0.731	0.710	0.734	7.2 (10)
	0.760	0.757	0.758	0.743	0.727	0.743	9.5 (10)
	0.751	0.740	0.740	0.730	0.710	0.728	1.3(11)
	0.758	0.755	0.753	0.737	0.722	0,737	1.6 (11)
	0.749	0.740	0.740	0.727	0.710	0.725	2.0 (11)
	0.744	0.740	0.734	0.720	0.701	0.718	2.5 (11)
	0,735	0.730	0.719	0.704	0.680	0.701	2.9 (11)
	0.750	0.747	0.746	0.736	0.710	0.730	4.1 (11)
	0.759	0.756	0.762	0.750	0.726	0.746	4.6 (11)
	0.762	0.759	0.763	0.751	0.725	0.745	5.2 (11)
	0.740	0.737	0.736	0.719	0.694	0.715	6.8 (11)
	0.746	0,740	0.913	0.900	0.771	0,875	1.6 (13)
	0.747	0.743	1.010	0.998	0.830	996.0	=
	0.746	0.742	1.146	1.122	0.890	1.075	=
	0.746	0.742	1.146	1.122	0.890	1.075	=
	0.747	0.742	1,205	1.245	0.961	1.190	3.7 (13)
	0.747	0.740	1.367	1,325	1.005	1.264	$\overline{}$

(1) Pre Test at Ambient Temperature
 (2) Pre Test at 100°F

	l
F) GE-90	
001)	
3. FORWARD VOLTAGE CHARACTERISTICS (100° F) GE-90	
FOR	
RUN 3.	
TABLE 3-20 RUN 3. F	, , , , ,

Control Diodes Irradiated Diodes 5 6 1* 2 3 4 0.790 0.792 0.787 0.774 0.750 0.776 0.771 0.788 0.782 0.774 0.751 0.776 0.787 0.781 0.789 0.778 0.754 0.777 0.780 0.781 0.789 0.776 0.776 0.777 0.779 0.789 0.776 0.750 0.775 0.779 0.770 0.774 0.750 0.775 0.779 0.770 0.774 0.750 0.775 0.779 0.770 0.774 0.750 0.775 0.770 0.772 0.781 0.780 0.786 0.775 0.770 0.774 0.770 0.775 0.775 0.775 0.775 0.770 0.776 0.776 0.776 0.775 0.776 0.775 0.770 0.776 0.776 0.776 0.776 0.776 </th <th>Forward</th> <th></th> <th>1</th> <th>Forward Voltage Drop (VDC)</th> <th>Forward Voltage Drop (VDC)</th> <th></th> <th></th> <th>Neutron</th>	Forward		1	Forward Voltage Drop (VDC)	Forward Voltage Drop (VDC)			Neutron
5 6 11* 2 3 4 0.790 0.792 0.787 0.774 0.760 0.775 0.771 0.780 0.782 0.787 0.784 0.775 0.780 0.788 0.780 0.778 0.764 0.777 0.787 0.781 0.780 0.770 0.775 0.764 0.775 0.779 0.781 0.780 0.770 0.770 0.774 0.750 0.764 0.770 0.772 0.781 0.780 0.760 0.750 0.764 0.770 0.772 0.781 0.780 0.760 0.750 0.764 0.770 0.771 0.772 0.781 0.780 0.765 0.775 0.771 0.772 0.781 0.780 0.785 0.775 0.775 0.772 0.773 0.774 0.775 0.781 0.786 0.775 0.786 0.775 0.774 0.776 0.776 0.776	Current	Contro	l Diodes		Irradiate	1		Exposure
0.790 0.787 0.774 0.750 0.775 0.771 0.780 0.787 0.757 0.751 0.760 0.771 0.788 0.789 0.778 0.754 0.775 0.780 0.781 0.780 0.776 0.773 0.773 0.772 0.783 0.791 0.776 0.775 0.774 0.770 0.772 0.781 0.742 0.755 0.771 0.772 0.781 0.742 0.755 0.771 0.772 0.781 0.742 0.755 0.772 0.774 0.740 0.745 0.756 0.771 0.771 0.790 0.780 0.775 0.772 0.781 0.790 0.745 0.775 0.774 0.776 0.775 0.775 0.775 0.776 0.776 0.775 0.781 0.786 0.776 0.777 0.780 0.815 0.815 0.777 0.770 0.770 <th>(Amps)</th> <th>5</th> <th>9</th> <th>*</th> <th>2</th> <th>3</th> <th>4</th> <th>(n/cm²)</th>	(Amps)	5	9	*	2	3	4	(n/cm²)
0.771 0.786 0.782 0.767 0.751 0.787 0.788 0.780 0.789 0.780 0.780 0.770 0.770 0.772 0.789 0.780 0.745 0.745 0.770 0.772 0.789 0.789 0.780 0.745 0.789 0.789 0.789 0.789 0.789 0.789 0.789 0.789 0.789 0.780 0.775	1,00	002 0	0 700	787	0 774	0,760	0.776	Ξ
0.771 0.784 0.787 0.778 0.754 0.778 0.754 0.789 0.778 0.754 0.789 0.789 0.778 0.755 0.759 0.789 0.778 0.756 0.750 0.789 0.789 0.789 0.789 0.789 0.789 0.789 0.789 0.789 0.789 0.789 0.780 0.750 0.770 0.770 0.770 0.771 0.772 0.781 0.780 0.785 0.785 0.780 0.780 0.785 0.781 0.780 0.785 0.785 0.780 0.785 0.785 0.786 0.780 0.775	0.0%0	0.7.0	277.0		777 0	0.751	0 760	(6)
0.787 0.788 0.770 0.771 0.750 0.780 0.781 0.780 0.750 0.750 0.787 0.783 0.780 0.750 0.750 0.779 0.770 0.774 0.760 0.750 0.771 0.772 0.781 0.760 0.742 0.771 0.772 0.781 0.780 0.745 0.776 0.776 0.776 0.776 0.775 0.776 0.777 0.816 0.801 0.756 0.776 0.777 0.845 0.801 0.775 0.776 0.777 0.919 0.900 0.815 0.777 0.777 1.031 1.015 0.873 0.776 0.779 1.230 1.210 0.973 0.777 0.779 1.230 1.210 0.973 0.776 0.776 1.316 1.404 1.105 0.777 0.776 1.230 1.260 1.159 0.789	0.0964	0.771	08/0	0.782	0.70	2,70	727.0	3 1 (10)
0.780 0.781 0.780 0.751 0.750 0.787 0.788 0.791 0.776 0.750 0.779 0.783 0.780 0.750 0.750 0.770 0.774 0.760 0.745 0.771 0.772 0.781 0.780 0.745 0.773 0.776 0.776 0.745 0.745 0.776 0.776 0.776 0.775 0.775 0.776 0.777 0.816 0.810 0.775 0.776 0.776 0.815 0.815 0.815 0.776 0.777 0.775 0.990 0.815 0.777 0.779 1.031 1.015 0.873 0.776 0.779 1.230 1.210 0.973 0.776 0.779 1.230 1.210 0.973 0.776 0.786 1.590 1.567 1.169 0.789 0.781 1.600 1.567 1.172 0.789 0.781	0.0961	0.787	0.788	0.790	0.778	0./04	///:0	(10)
0.787 0.788 0.791 0.776 0.750 0.779 0.783 0.780 0.750 0.750 0.770 0.772 0.774 0.760 0.742 0.771 0.772 0.781 0.760 0.745 0.776 0.776 0.790 0.776 0.745 0.776 0.776 0.781 0.786 0.745 0.776 0.776 0.781 0.786 0.730 0.776 0.776 0.815 0.786 0.775 0.776 0.777 1.031 1.015 0.873 0.777 0.779 1.230 1.210 0.973 0.776 0.779 1.230 1.210 0.973 0.777 0.776 1.249 1.404 1.105 0.784 0.786 1.550 1.159 1.169 0.789 0.781 1.600 1.567 1.172 0.789 0.781 1.600 1.567 1.172 0.789	0.0964	0.780	0.781	0.780	0.761	0.750	0.765	7.4 (10)
0.779 0.783 0.780 0.750 0.770 0.774 0.760 0.742 0.771 0.772 0.781 0.760 0.745 0.781 0.782 0.780 0.745 0.781 0.782 0.780 0.756 0.776 0.776 0.776 0.776 0.776 0.773 0.815 0.801 0.756 0.776 0.773 0.845 0.810 0.775 0.776 0.776 0.919 0.900 0.815 0.776 0.777 1.031 1.015 0.873 0.777 0.779 1.230 1.210 0.973 0.776 0.776 1.230 1.210 0.973 0.776 0.776 1.288 1.001 0.777 0.776 1.290 1.567 1.169 0.784 0.786 1.560 1.567 1.172 0.789 0.781 1.600 1.567 1.172	0.0962	0.787	0.788	0.791	0.776	0.761	0.773	1.3(11)
0.770 0.774 0.760 0.742 0.771 0.772 0.781 0.760 0.745 0.781 0.781 0.780 0.756 0.756 0.776 0.776 0.776 0.756 0.756 0.773 0.785 0.816 0.801 0.756 0.776 0.773 0.845 0.810 0.775 0.776 0.776 0.919 0.900 0.815 0.777 0.779 1.031 1.015 0.873 0.777 0.779 1.230 1.210 0.973 0.776 0.770 1.491 1.404 1.105 0.777 0.786 1.590 1.552 1.169 0.789 0.781 1.600 1.567 1.172	0.0964	0.779	0.783	0.780	0,760	0.750	0.764	1.7(11)
0.771 0.772 0.781 0.745 0.781 0.790 0.780 0.756 0.776 0.776 0.775 0.745 0.783 0.786 0.816 0.801 0.756 0.776 0.773 0.825 0.810 0.775 0.776 0.776 0.919 0.900 0.815 0.777 0.777 1.031 1.015 0.873 0.777 0.779 1.230 1.210 0.973 0.776 0.779 1.316 1.288 1.001 0.777 0.776 1.316 1.404 1.165 0.777 0.776 1.491 1.404 1.165 0.784 0.786 1.590 1.552 1.169 0.789 0.781 1.600 1.567 1.172	0 0965	0.770	0.770	0.774	0.760	0.742	0.755	2.2 (11)
0.781 0.781 0.776 0.756 0.776 0.776 0.775 0.745 0.783 0.786 0.816 0.801 0.756 0.776 0.773 0.825 0.810 0.730 0.776 0.776 0.919 0.900 0.815 0.777 0.777 1.031 1.015 0.873 0.777 0.779 1.230 1.210 0.973 0.776 0.779 1.316 1.288 1.001 0.777 0.776 1.491 1.404 1.165 0.784 0.786 1.590 1.552 1.169 0.789 0.781 1.600 1.567 1.172	0.0949	0.771	0.772	0.781	0,760	0.745	0,760	3.1 (11)
0.776 0.776 0.745 0.783 0.786 0.816 0.801 0.756 0.776 0.773 0.825 0.810 0.730 0.776 0.775 0.845 0.830 0.775 0.776 0.770 0.919 0.900 0.815 0.777 0.777 1.031 1.015 0.873 0.776 0.779 1.230 1.210 0.973 0.776 0.770 1.316 1.288 1.001 0.777 0.776 1.491 1.404 1.105 0.784 0.786 1.590 1.552 1.169 0.789 0.781 1.600 1.567 1.172	0 0963	0.781	0.781	0.790	0.780	0.756	0.775	<u>→</u>
0.783 0.786 0.816 0.801 0.756 0.776 0.773 0.825 0.810 0.773 0.776 0.776 0.845 0.830 0.775 0.777 0.777 0.919 0.900 0.815 0.777 0.779 1.230 1.210 0.973 0.776 0.790 1.316 1.288 1.001 0.776 0.776 1.491 1.404 1.165 0.784 0.786 1.590 1.552 1.169 0.789 0.781 1.600 1.567 1.172	0 0965	0.776	0.776	0,791	0.776	0.745	0.770	6.1 (11)
0.776 0.773 0.825 0.810 0.730 0.776 0.776 0.845 0.830 0.775 0.777 0.777 1.031 1.015 0.873 0.777 0.779 1.230 1.210 0.973 0.776 0.790 1.316 1.288 1.001 0.777 0.776 1.491 1.404 1.105 0.784 0.786 1.590 1.552 1.169 0.789 0.781 1.600 1.567 1.172	0 0968	0,783	0.786	0.816	0.801	0.756	0.793	6.4 (11)
0.776 0.845 0.830 0.775 0.776 0.919 0.900 0.815 0.777 0.777 1.031 1.015 0.873 0.777 0.779 1.230 1.210 0.973 0.776 0.779 1.316 1.288 1.001 0.777 0.776 1.491 1.404 1.105 0.784 0.786 1.590 1.552 1.169 0.789 0.781 1.600 1.557 1.172	0.0961	0.776	0.773	0.825	0.810	0.730	008.0	1.7 (12)
0.776 0.770 0.919 0.900 0.815 0.777 0.777 1.031 1.015 0.873 0.771 0.779 1.230 1.210 0.973 0.776 0.790 1.316 1.288 1.001 0.777 0.776 1.491 1.404 1.105 0.784 0.786 1.590 1.552 1.169 0.789 0.781 1.600 1.567 1.172	0 0966	0.776	0.776	0.845	0.830	0.775	0.816	5.3 (12)
0.777 0.777 1.031 1.015 0.873 0.777 0.779 1.230 1.210 0.973 0.776 0.790 1.316 1.288 1.001 0.777 0.776 1.491 1.404 1.105 0.784 0.786 1.590 1.552 1.169 0.789 0.781 1.600 1.567 1.172	0 0967	0.776	0,770	0.919	0.900	0.815	0.885	1.1 (13)
0.771 0.779 1.230 1.210 0.973 0.776 0.790 1.316 1.288 1.001 0.777 0.776 1.491 1.404 1.105 0.784 0.786 1.590 1.552 1.169 0.789 0.781 1.600 1.567 1.172	0 0966	0.777	0,777	1.031	1.015	0.873	0.985	_ _
0.776 0.790 1.316 1.288 1.001 0.777 0.776 1.491 1.404 1.105 0.784 0.786 1.590 1.552 1.169 0.789 0.781 1.600 1.567 1.172	0 063	0 771	0.779	1,230	1,210	0.973	1,160	2.7 (13)
0.777	0,070	0 776	0.790	1,316	1.288	1.001	1.235	<u> </u>
0.784 0.786 1.590 1.552 1.169 1 0.789 0.781 1.600 1.567 1.172 1	9500	0 777	0.776	1,491	1.404	1,105	1.387	3.8 (13)
0.789 0.781 1.600 1.567 1.172	0.0964	0.784	0,786	1.590	1,552	1.169	1.479	4.2 (13)
	9960.0	0.789	0.781	1.600	1.567	1.172	1.489	4.4 (13)
	•							
	G							
							and the second second	
_					-			

(1) Pre Test At Ambient Temperature (2) Pre Test At 100º F

Neutron	Exposure	(n/cm ²)	(1) 2.0 (10) 9.1 (10) 2.3 (11) 4.1 (11) 7.1 (11)	
		*01	0.747 0.760 0.700 0.738 0.757 0.759	
	d Diodes	6	0.735 0.756 0.710 0.732 0.742 0.746	
ge Drop (VDC)	Irradiatec	8	0.727 0.737 0.710 0.732 0.748	
Forward Volta		7	0.757 0.750 0.724 0.752 0.773	
	l Diodes	12	0.753 0.758 0.740 0.766 0.767 0.768	
	Contro	11	0.758 0.741 0.740 0.751 0.751	
Forward	Current	(Amps)	0.0961 0.0958 0.0956 0.0952 0.0964	
	Forward Voltage Drop (VDC)	Forward Voltage Drop (VDC) Control Diodes	d Forward Voltage Drop (VDC) Control Diodes Irradiated Diodes 10*	Control Diodes Forward Voltage Drop (VDC) I

(1) Pre Test At Ambient Temperature

RUN 4, REVERSE LEAKAGE CHARACTERISTICS (100° F) GE-90 **TABLE 3-22**

(1) Pre Test at Ambient Temperature
(2) Pre Test at 100°F

TABLE 3-23 RUN 5, REVERSE LEAKAGE CHARACTERISTICS (100° F) GE-90

Reverse			Reverse Leakage (µA)	ikage (µA)			Neutron
Voltage	Control	l Diodes		Irradiated	d Diodes		Exposure
(VDC)	5	9		2	3	4	(n/cm ²)
402.1	0.299	0.302	0,572	0,302	0.282	0.301	(1)
402.4	0,612	0.351	0.471	0.442	0.552	0.301	20
402.2	1,202	0.347	0.582	0.322	0.345	0.342	1,3 (10)
402.3	1,332	0.345	0.542	0.401	0.329	0,345	_
402.0	1.132	0.337	0.474	0.442	0.552	0,382	_
402.3	2.049	0.402	0.501	0.301	0.392	0.309	1.4 (11)
402.2	2,039	0.372	0.542	0.401	0.481	0.303	1.6 (11)
402.1	2,602	0.392	0.572	0.412	ı	0.362	1,7 (11)
402.4	3.004	0.382	0.502	0.522	0.662	0.422	2.5 (11)
402.1	3,329	0.412	0.682	0.432	0.412	0.422	2.9 (11)
402.1	2,005	0.402	0.702	0.482	0.401	0.401	3,1 (11)
402.1	3.699	0.402	0.449	0.401	0.602	0.434	3.8 (11)
1	3.131	0.772	0.709	ı	ı	0.412	_
402.1	_	0.372	0.701	0.418	1	0.411	6.9 (11)
401.8	3.039	0,351	1.642	1.612	1.652	1.321	4.4 (13)

(1) Pre Test at Ambient Temperature (2) Pre Test at 100° F

	2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ı					- 4
Reverse			Reverse Leakage (µA)	cage (μΑ)			Neutron
Voltage	Control Di	Diodes		Irradiated	Diodes		Exposure 2,
(VDC)	5	9		2 *	3	4	(u)/cm)
497.8		0.279	0.841	0.482	0.301	0.411	(E)
497.9	1		0.762	0.702	0.851	0.492	(2)
498.0	١	0.300	0.701	0.601	0.709	0.485	2.2 (9)
498.0	١	0.349	0.731	0.655	0.761	0.512	-
497.9	ı	0,632	0.742	0,601	0.822	0.522	9.2 (10)
498.0	169.99	0.612	0.752	0.552	0.601	0.481	1.3(11)
498.0	280.04	0.654	0.681	0.551	0.571	0.502	1.6 (11)
498.0	1	0.329	0.801	0.642	0.502	0.542	1.8 (11)
498.0	1	0.399	0.816	0.712	0.801	0.501	2.1 (11)
497.8	1	0.329	0.952	0.802	0.802	0.622	2.9 (11)
497.8	ı	0.401	1 ,002	0.719	0.592	0.601	3.0 (11)
497.9	ı	ı	1.042	0.772	0.682	i	
497.9	1	0.399	0.652	0.689	0.762	0.531	4.6 (11)
497.8	310.07	ı	0.647	0.741	0.842	0.542	
497.9	400.39	0.319	0.949	0.759	0.642	0.612	
497.9	410.00	0.299	1.042	0.801	0.682	0.662	പ
	413,49	-	1.069	0.962	0.801	0.802	
498.0	420.99	1	1,371	1,102	1.101	0.942	
497.9	380.07	ı	1,522	1,505	1.502	1,292	
497.9	403.99	ı	1,715	1.701	1,702	1.452	Ω.
497.9	402.99	1	2.302	2,301	2.322	1.907	4
6 267	404,99	ı	3.111	3,132	2,962	2.501	.7
497.9	400.59	1	3.542	3,359	3.342	2.771	3.5 (13)
497.9	400.69	i	4.031	3,901	3.642	3.042	٠.
					ranskrádní k		

(1) Pre Test at Ambient Temperature
(2) Pre Test at 100°F

3.2 SCR's

The results of the tests on the SCR's are presented by both graphical and tabular means.

Figure 3-9 shows the pre and post bench data for the forward blocking and reverse leakage characteristic of a typical SCR. This figure indicates an increase in reverse leakage from the pre-test value by a factor of 6.1 at the lowest inverse voltage to 24.5 at the highest voltage. The forward blocking current increased by a factor of 14.4 at the lowest forward voltage to 14.6 at the highest voltage. Table 3-25 includes the pre and post irradiation bench data for all SCR's subjected to the 100°F test and post irradiation data for the SCR's subjected to the 160°F test.

Figures 3–10 and 3–11 show the forward and reverse characteristics versus neutron exposure for a typical SCR. Tables 3–27 thru 3–33 include the data for all SCR's with an asterisk indicating the SCR plotted. Figure 3–10 shows a trend toward increasing voltage drop at approximately 2.5×10^{11} nvt with a steady increase from that point until the end of the test, finally reaching a value six times that for the pre-test value. It is also apparent that the slope changed noticeably when the lithium hydride shield was removed.

Figure 3-11 shows a trend toward increasing leakage current at approximately $6 \times 1.0^{11} \text{ n/cm}^2$ with an increase from that point until the end of the test reaching a value 24 times the pre-test value. A noticeable increase in the slope is apparent where the lithium hydride shield was removed.

Table 3-26 includes data on the firing characteristics of five of the six SCR's tested during the 100°F test. SCR-6 was destroyed during checkout by circuit error. The SCR data for the 160°F run is omitted because the variation in the measurements is greater than any change that occurred. The SCR's were low

priority items and many of the data cycles were omitted in favor of other test articles.

Prior to the beginning of the 160°F irradiation, an error was made in the wiring which destroyed four SCR's. These SCR's were replaced as follows:

SCR Originnaly to be Irradiated	Temp.	SCR Actually Used	Designation of Unit on Data
SCR-7	160°	SCR-1	SCR-7
SCR-8		SCR-2	SCR-8
SCR-9		SCR-3	SCR-9
SCR-10		SCR-4	SCR-10
SCR-11		SCR-5	SCR-11
SCR-12	160°	SCR-6	SCR-12
SCR-1	100°	SCR-7	SCR-1
SCR-2		CR 2 from SCR Control S/N 11	SCR-2
SCR-3		CR 1 from SCR Control S/N 11	SCR-3
SCR-4		SCR-10	SCR-4
SCR-5		CR 2 from SCR Control S/N 12	SCR-5
SCR-6	100°	CR 1 from SCR Control S/N 12	SCR-6

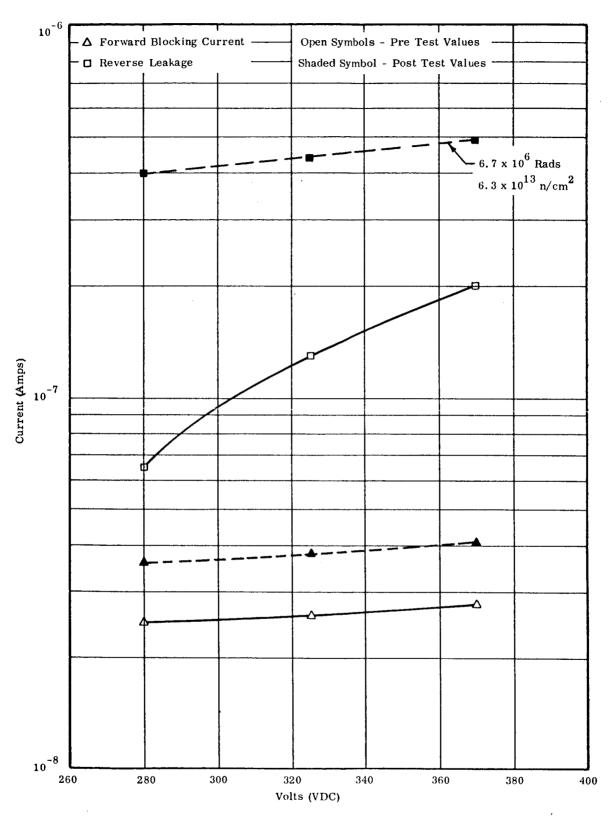


FIGURE 3-9 FORWARD AND REVERSE CHARACTERISTICS, SCR 2N1778, 100°F

TABLE 3-25 SCR CHARACTERISTICS PRE AND POST MEASUREMENT AT LABORATORY-2N1778

Ì										Г
†;	Diode	de	Pre	_	ا _ل (Amps) @ ۷ _و			$\sf I_R$ (Amps) $@\ \sf V_R$	~	
.əT	lder	Identification	Post	280 VDC	325 VDC	370 VDC	280 VDC	325 VDC	370 VDC	-т
		SCR-1	Pre	2.5 (-8)	2.6 (-8)	2.8 (-8)	6.5 (-8)	1.3 (-7)	2.0 (-7)	
		-))	Post	3.6 (-7)	3.8 (-7)	4.1 (-7)	4.0 (-7)	4.4 (-7)	4.9 (-7)	
	<u> </u>		Pre	1.0 (-7)	2.5 (-7)	5.0 (-7)	3.5 (-8)	4.4 (-8)	5.7 (-8)	
	pə.	SCR-2	Post	5.1 (-7)	6.0 (-7)	7.3 (-7)	3.6 (-7)	4.0 (-7)	4.4 (-7)	
4	io ibi		Pre	3.2 (-8)	4.2 (-8)	6.5 (-8)	2.7 (-6)	6.4 (-6)	1.2 (-5)	 -
000	וייכ	SCR-3	Post	5.5 (-7)	6.1 (-7)	6.6 (-7)	9.7 (-7)	1.6 (-6)	3.3 (-6)	$\overline{}$
l		60	Pre	2.0 (-8)	2.2 (-8)	2.4 (-8)	9.0 (-7)	2.8 (-6)	1.8 (-5)	
		3CK-4	Post	Shorted	Shorted	Shorted	Shorted	Shorted	Shorted	\top
	,	3-800	Pre	1.5 (-8)	1.6 (-8)	1.8 (-8)	1.5 (-8)	1.8 (-8)	2.3 (-8)	
	lort	ה - אין היים היים היים היים היים היים היים היים	Post	2.2 (-8)	2.3 (-8)	2.5 (-8)	2.4 (-8)	3.0 (-8)	3.9 (-8)	
	noD									
	Р	SCR-7	Post	1.5 (-6)	1.6 (-6)	1.7 (-6)	7.2 (-7)	2.2 (-7)	1.3 (-5)	
	ațe	SCR-8	Post	1.2 (-6)	1.3 (-6)	1.4 (-6)	6.2(-7)	6.9 (-7)	9.4 (-7)	
ے اد	ibaı	SCR-9	Post	8.1 (-7)	9.8 (-7)	1.2 (-6)	9.9 (-7)	1.4 (-6)	2.1 (-6)	
091	1	SCR-10	Post	3.7 (-6)	3.8 (-6)	3.7 (-6)	1.2 (-7)	1.3(-7)	1.5 (-7)	Т
l	lorti	SCR-11	Post	1.6 (-7)	2.3 (-7)	4.3(-7)	6.0 (-5)	1.0 (-4)	1.7 (-4)	
	no⊃	SCR-12	Post	4.7 (-7)	5.7 (-7)	6.5 (-7)	6.8 (-8)	1.2 (-7)	1.8 (-7)	
1	1			Test	Gamma Dose (Rads)		Neutron Exposure (n/cm ²)			
					1	\dagger				

1.13 (12) 6.3 (13)

6.7 (6)

4.1 (6)

160° F 1000 F

	Neutron	Exposure	\> \		*	1.5 (11)	2.1 (11)	3.7 (11)	6.3(11)	6.6 (11)
SCR-1	Gate Characteristics	Gate	Current	(WA)	2.0	9.1	8.4	5.2	8.4	4.8
	Gate Chai	Gate	Volts	(VDC)	9.0	0.7	-:	0.1	1.2	1.4

Gate Current (MA)

Gate Volts (VDC)

Neutron Exposure (n/cm⁻)

Gate Current (MA)

Gate Volts (VDC)

2.0* 1.6 2.8 3.6

0.7

1

3.6 (10) 1.5 (11) 2.9 (11) 3.7 (11) 6.3 (11)

0.8

3.2 3.2 3.6 2.6

0.8 0.7 0.7 0.7 1.0

Gate Characteristics

SCR-5

TABLE 3-26 SCR GATE CHARACTERISTICS 100°F, 2N1778

SCR-2 Gate Characteristics

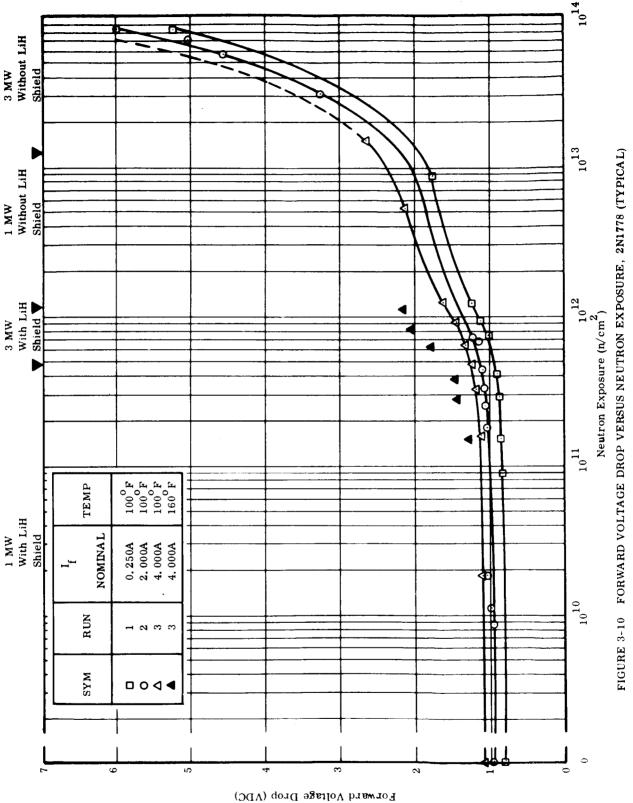
	Neutron	Exposure (n/cm ²)	2.1 (11) 3.7 (11) 6.3 (11) 6.6 (11)
SCR-1	Gate Characteristics	Gate Current (MA)	2.0 1.6 5.2 8.8 8.8
	Gate Cha	Gate Volts (VDC)	0.6 0.7 1.1 1.2 1.4

	Neutron	Exposure	/ III.) /II.		*	4.3 (10)	9.5 (10)	2.1 (11)	2.9 (11)	3.7 (11)	6.3(11)	6.6 (11)
SCR-4	Gate Characteristics	Gate	Current	(MA)	3.6	2.4	4.4	4.0	8.9	8.0	6.4	8.0
	Gate Cha	Gute	Volts	(VDC)	9.0	1.0	1.0	-:	-:-	1.3	1.6	1.7
											-	-

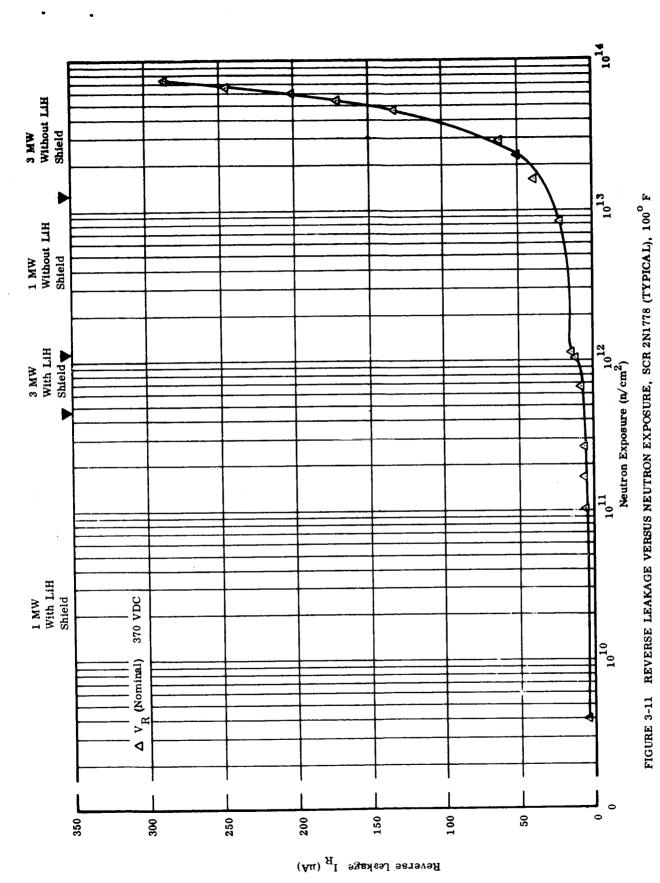
9.5 (10) 1.5 (11) 2.4 (11) 2.9 (11) 6.3 (11) 6.6 (11)

3.2 6.0 6.0 8.4 8.8

-0.0.0.2..4.


Exposure (n/cm)

Gate Current (MA)


Gate Volts (VDC)

Neutron

SCR-3 Gate Characteristics

3-44

3-45

	Neutron	Exposure	(n/cm ²)	<u>(</u>	(2)	8.9 (10)	1.1 (11)	1.5 (11)	2.3 (11)	2.9 (11)	3.3 (11)	4.0 (11)	4.6 (11)	5.2 (11)	5.6 (11)	6.0 (11)	6.6 (11)	7.2 (11)	9.1 (11)	9.7 (11)	1.2 (12)	8.7 (12)	8.2 (13)			
SCR-2N1778			4	0.804	ı	0.810	ı	0.828	0.841	0.849	0.850	ı	1	ì	j	ı	1.005	1	ı	i	1 , 230	1.800	ı			
RUN 1, FORWARD VOLTAGE CHARACTERISTICS (100° F) SCR-2N1778		d SCR's	3	0.890	0.895	0.919	0.920	0.946	1.013	1.019	1.025	1.047	1.094	1.094	1,100	1.106	1.166	1.170	1.275	1.300	1.380	1.794	4.140			
SE CHARACTER	Forward Voltage Drop (VDC)	Irradiated	2 *	0.802	0.800	908.0	0.814	0.831	0.848	0.870	0.880	0.895	0.942	0.944	0.947	0.950	1.001	1.066	1.100	1.136	1,230	1,755	5.232			-
RWARD VOLTA	Forward Volta		_	0.885	0.880	0.903	0.910	0.927	0.941	0.963	0.979	0.999	1.051	1.060	1.063	1.076	1.120	1,155	1.270	1.315	1.431	2.021	6.124			
- 1		Control SCR's	9	ı	ı	ı	1	1	1	1	ı	ı	1	i	1	1	1	ı	1	1	-	ı	ı	~		
TABLE 3-27		Contro	5	0.939	1	0.870	ı	0.873	0.874	0.883	0.874	1	ı	ı	1	0.877	0.870	0.870	0.891	1	-	0.865	0.878			
	Forward	Current	(Amps)	0.250	•							al	uju	u oþ	7 .							•	0.250			

(1) Pre Test at Ambient Temperature (2) Pre Test at 100° F

TABLE 3-28 RUN 2, FORWARD VOLTAGE CHARACTERISTICS (100° F) SCR-2N1778

		Forward Voltag	Forward Voltage Drop (VDC)			Neutron
Control SCR	R's		Irradiated	id SCR's		Exposure
5	9	_	2*	3	4	(n/cm ²)
		1 066	770	1 055	770 0	(1)
970.		cco.	0.700	ccn	00%.0	E)
1.018		1.043	0.958	1.044	0.957	(2)
1.010	-	1.048	0,960	1.048	0,960	8.6 (9)
1.015	-	1.101	0.989	1.086	0.992	1.1 (10)
1.031		1,161	1,037	1.142	1.035	1.8 (11)
1.017		1.164	1.031	1.140	1.034	2.4 (11)
1.016		1,150	1.043	1.153	1.046	3.0 (11)
1.016		1,189	1.050	1.154	1.050	3.2 (11)
1.014		1.204	1.059	1.165	1.050	3.5 (11)
1.014		1.236	1.081	1,195	1.083	4.4 (11)
1.014		1.284	1.101	1.220	1.109	5.3 (11)
1.012	-	1.306	1.134	1.243	1.125	5.7 (11)
1.013		1,395	1.200	1.305	1.184	7.2 (11)
1.025		1.630	1.404	1.501	1.319	9.6 (11)
1.014		3,445	2,883	2,300	2.137	1.3 (12)
1.015		4.253	3,251	3,900	4,635	3.1 (13)
1.016		5.221	4.280	4.900	5,999	$\overline{}$
1.015	-	5.486	4.551	5,001	6.346	$\overline{}$
1,015		991.9	5,001	5,500	6.450	=
1.028		7.212	5.980	5,230	1	$\overline{}$
				÷		
•						
•						

(1) Pre Test at Ambient Temperature(2) Pre Test at 100° F

	Neutron	Exposure	(n/cm ²)	(1)	(2)	1.8 (10)	1.6 (11)	2.2 (11)	2.7 (11)	3.2 (11)	4.8 (11)	5.3 (11)	5.6 (11)	6.2 (11)	8.8 (11)	1.0 (12)	1.2 (12)	5.2 (12)	1.5 (13)
CR 2N1778			4	1.069	1.064	1.070	1.101	1.144	1.160	1.180	1,205	1,250	1.260	1.278	1.402	1.500	1,565	2,010	2.921
run 3, forward voltage characteristics (100° f) scr 2n1778		d SCR's	3	1,162	1,155	1,161	1.228	1.251	1.261	1.280	1.314	1,350	1.370	1.414	1.540	1.641	1,692	2.231	3.070
CHARACTERIS	Forward Voltage Drop (VDC)	Irradiated	2 *	1.078	1.074	1.080	1.110	1.150	1.158	1.183	1,309	1.257	1.268	1,299	1,421	1.534	1.611	2,131	2.615
ARD VOLTAGE	Forward Volta			1.149	1.140	1.154	1.230	1.263	1,285	1.328	1.369	1.450	1.465	1.505	1.676	1.831	1,928	2.594	3.351
RUN 3, FORW		SCR's	9																
TABLE 3-29		Control	5	1.142	1.134	1.134	1.135	1.137	1.134	1.134	1.130	1.135	1,135	1,133	1.134	1,133	1,130	1,137	1.140
	Forward	Current	(Amps)	3.314	3,336	3,336	3,339	3.340	3,391	3,332	3.332	3.334	3,334	3.322	3.341	3,333	3.320	3,327	3.325

(1) Pre Test at Ambient Temperature(2) Pre Test at 100° F

TABLE 3-30 RUN 3, FORWARD VOLTAGE CHARACTERISTICS (160° F) SCR-2N1778

Forward		For	Forward Voltage Drop (VDC)	ge Drop (VDC)			Neutron
Current	Control	ol SCR's		Irradiated	d SCR's		Exposure
(Amps)	11	1.2	7	80	6	10	(n/cm ²)
4.028 3.974 4.315 3.989 4.017 3.996	1.131 1.157 1.18 1.152 1.141 1.141	1.160 1.184 1.178 1.178 1.173	1.112 1.170 1.287 1.311 1.499 1.678 1.765	1.112 1.292 1.313 1.521 1.751 1.831	1.211 1.288 1.437 1.789 2.033 2.135	1.217 1.308 1.469 1.699 1.899 2.002	(1) 1.5 (11) 2.8 (11) 3.9 (11) 6.2 (11) 8.1 (11) 1.1 (12)
(1) Pre Test at	Pre Test at Ambient Temperatur	rature					

Z OZ	- Zeolion	Exposure 2	(n/cm ²)	(1)	1.5 (11)	1.7 (11)	2.2 (11)	2.5 (11)	3.0 (11)	3.4 (11)	4.0 (11)	4.7 (11)	5.5 (11)	7.4 (11)	9.3 (11)	1.0 (13)	
778			4	4,989	9.007	11.210	9,469	13,609	13,403	18.002	18.699	71.099	70.079	51.619	63.667	>110.49	÷. · · · · · · · · · · · · · · · · · · ·
RUN 4, REVERSE LEAKAGE CHARACTERISTICS SCR 2N1778		d SCR's	3	2.006	3.803	4.499	4.449	5.001	5.039	7.029	7.005	7.459	7.502	13,009	15.611	28.639	74.999
E CHARACTERIS	Keverse Leakage (µA)	Irradiated	2	1,119	3,000	4.159	3.649	4.549	4.032	5.007	5.539	5,969	5.002	6.399	8.379	19.039	> 87.37
VERSE LEAKAG	Keverse Le		_	1,409	3.009	3.003	2.999	3.902	3.019	4.009	4.007	4.099	4 039	5.099	5.059	17.460	120.00
ł		Control SCR's	9											~~~			
TABLE 3-31		Contro	5	1)	209.	. 269	.309	.371	l	•	. 499	.330	. 589	.799	1	1
c	Keverse	Voltage	(VDC)	284.1	284.4	284.4	284.3	784.5	284.4	284.5	284.5	284.6	284.4	284.3	284.3	284.2	283.9

(1) Pre Test at Ambient Temperature

2.3 (10) 2.2 (11) 2.9 (11) 3.4 (11) 4.1 (11) 5.7 (11) 7.0 (11) 9.4 (11) 1.1 (12) 1.3 (12) 1.2 (13) 8.2 (13) (n/cm^2) Neutron Exposure 12.189 9.049 10.029 10.009 20.069 16.451 75.199 28.781 40.02 72.01 95.659 110.29 RUN 5, REVERSE LEAKAGE CHARACTERISTICS (100° F) SCR 2N1778 4 4.362 4.059 5.099 6.639 7.434 7.001 8.003 9.001 10.29 16.32 21.409 24.969 97.09 က Irradiatec SCR's 4.299 4.619 4.899 4.599 6.400 7.229 6.99 8.04 17.003 14.869 Reverse Leakage (µA) 2 3.501 3.442 3.069 4.369 5.000 5.169 4.299 4.04 5.04 8.849 11.000 19.32 9 Control SCR's **TABLE 3-32** 0.698 0.698 0.616 1.601 0.701 0.709 0.999 2 Voltage Reverse (VDC) 328.3 328.2 328.2 328.2 328.2 328.2 328.0 328.0 328.0 328.0 328.0 328.0

7.0 (9)
1.0 (11)
1.6 (11)
2.6 (11)
3.3 (11)
5.9 (11)
5.9 (11)
7.5 (12)
1.1 (12)
7.5 (13)
7.5 (13)
7.5 (13)
7.5 (13) Exposure (n/cm^2) Neutron 14.209 11.302 13.099 12.507 18.029 21.049 30.004 28.699 42.00 50.69 54.05 104.39 110.04 128.29 130.01 171.01 210.03 193.19 221.19 243.24 250.99 250.99 330.32 4 RUN 6, REVERSE LEAKAGE CHARACTERISTICS SCR 2N1778 5.409 5.089 5.087 7.039 8.005 9.499 9.000 11.29 10.04 14.01 18.099 72.64 26.28 22.99 33.89 45.59 60.99 74.08 100.01 191.19 က Irradiated SCR's Forward Voltage Drop (VDC) 4.089 5.005 5.000 4.549 5.739 6.006 7.701 7.679 7.19 8.20 11.779 13.09 19.19 20.12 20.09 37.08 50.69 60.01 130.03 170.11 3.339 2.999 4.007 4.562 5.007 5.379 6.002 5.049 5.08 5.08 5.08 5.09 17.50 20.01 74.09 181.99 240.05 370.09 Ø SCR's Control **TABLE 3-33** 1.209 1.029 1.639 1.639 0.840 0.801 0.699 S Forward Current (Amps) 371.9 371.9 371.9 371.8 371.8 371.8 371.8 371.8 371.8 371.8 371.8 371.8 371.8 371.8 371.8 371.8 371.8 371.8

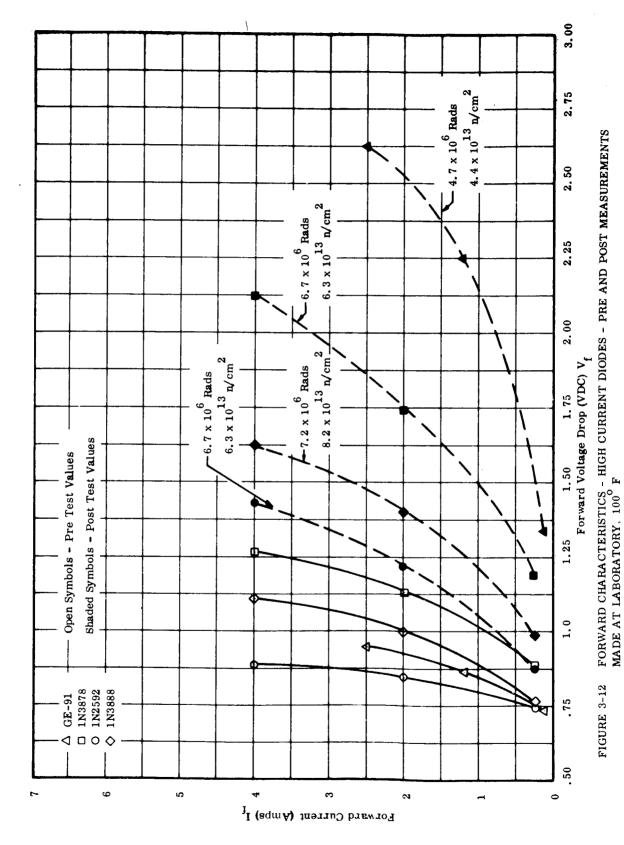
3.3 HIGH CURRENT DIODES

Five types of diodes are discussed in this section; the GE-91. the Hughes 1N3878, the Bradley 1N2592, the Hughes 1N3888, and the GE-92. This group comprises the group of diodes with forward test currents ranging from 120 milliamperes to 9 amperes. Both graphical and tabular means are used to report the results of the tests.

Figures 3–12 and 3–13 show the pre and post irradiation bench data for forward and reverse characteristics of a typical diode for each type except the GE-92. Figures 3–14 and 3–15 show these characteristics for the GE-92. Tables 3–34 thru 3–38 include the data for all diodes with an asterisk indicating the diode plotted.

Figure 3-13 indicates an increase in the level of reverse leakage from the pretest values. This increase is common to all types and the degree of change or increase in reverse leakage ranges from a factor of 1.13 on the 1N3888 to 14.9 on the 1N2592 at the lowest inverse voltage condition. At the highest inverse voltage the increase ranged from a factor of 1.13 on the 1N3888 to 12.9 on the 1N2539. The reverse characteristics for the GE-92 shown on Figure 3-15 also indicates this increase. The increase was by a factor of 6.9 at the lowest inverse voltage to 2.5 at the highest.

Figure 3-12 shows an increase in the level of forward voltage drop from the pretest values. The spread of voltage drop versus forward current ranged from 152 millivolts on the 1N2595 to 380 millivolts on the 1N3878 for pre-irradiation test data. The spread ranged from 559 millivolts on the 1N2592 to 1.339 volts on the GE-91 for the post irradiation test data. The increase in the forward drop at the lower currents ranged from a factor of 1.17 on the 1N2592 to 1.81 on the GE-91. The change at the higher current ranged from a factor of 1.46 on the 1N3888 to 2.82 on the GE-91. The forward characteristics for the GE-92 shown on Figure 3-14 also indicates this increase in forward voltage drop


from the pre-test value. The difference in spread of voltage drop versus forward current for the GE-92 was 114 millivolts in the pre-test data and 655 millivolts in the post-test. The increase in the forward drop at the lowest current was by a factor of 2.1 and at the highest current by a factor of 2.5.

Figures 3-16, 3-18, 3-20, 3-23 and 3-25 show forward voltage drop versus neutron exposure for the five types of diodes. Tables 3-39 thru 3-73 include the data for all diodes with an asterisk indicating the diode plotted. No significant increase in forward drop was observed until an exposure in the range of 2.5 - 5.0 x 10 1 n/cm was reached. There was a gradual increase in forward drop from the exposure level. A significant change in slope of the curve occurred when the lithium hydride shield was removed.

Figures 3–17, 3–19, 3–21, 3–24, and 3–26 show reverse leakage versus neutron exposure for the five types of diodes. Tables 3–39 thru 3–73 include the data for all diodes with an asterisk indicating the diode plotted. The graph of the 1N3888 and 1N3878 indicate definite increase in leakage currents at an exposure level of approximately $2.0 \times 10^{11} \text{ n/cm}^2$. Closely approximating this exposure level there was a shift change where the reactor power was decreased to zero. Following startup this trend did not continue to the degree noticed prior to shift change. A slight increase in leakage started immediately after startup though it did not reach the same level until approximately $1.5 \times 10^{13} \text{ n/cm}^2$ on the 1N3878 and $4.5 \times 10^{13} \text{ n/cm}^2$ on the 1N3888. The temporary increase is attributed to surface ionization buildup which decayed when the irradiation ceased.

Figure 3-22 shows leakage versus gamma dose for the 1N3888. This curve shows that the first increase was primarily due to gamma irradiation produced ionization and the latter increase due to lattice damage produced by the combination of gamma and neutrons. The GE-91, 1N2592 and GE-92 showed a definite

increase in leakage at an approximate exposure level of 1.0 \times 10¹³ n/cm² with a slight trend from about 3.0 \times 10¹¹ to 1.0 \times 10¹³ n/cm².

-56

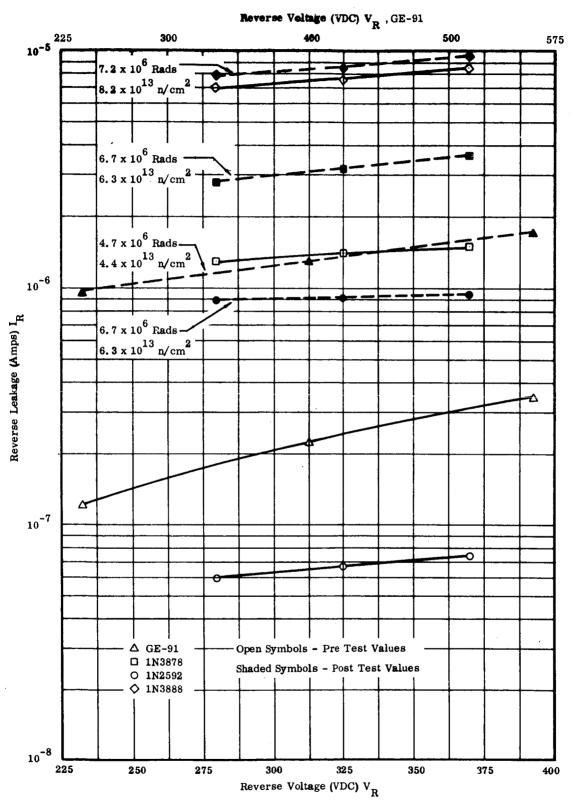


FIGURE 3-13 REVERSE CHARACTERISTICS - HIGH CURRENT DIODES - PRE AND POST MEASUREMENTS MADE AT LABORATORY, 100° F

Neutron Exposure (n/cm²)

Gamma Dose

Test

* Common Potential and Current

Leads used in Test

(Rads)

6.7 (6)

4.1 (6)

100° F 160° F

6.3 (13)

3-58

IN3888	
ABORATORY,	
TS AT L	
MEASUREMEN	
AND POST	
S, PRE	
TABLE 3-35 DIODE CHARACTERISTICS, PRE AND POST MEASUREMENTS AT LABORATORY, IN	
TABLE 3-35 C	

ţs	Diode	de	Pre		V _f at I _f				IR at VR	
:eI	lde	Identification	Post	0.250A	2.000A	4.000A	280 VDC		325 VDC	370 VDC
		D1-1	Pre Post	0.760	1.005	1.110	7.0 (-6)		7.6 (-6) 8.6 (-6)	8.5 (-6) 9.6 (-6)
	pə	D1-2	Pre Post	0.745	0.980	1.063	3.5 (-6) 5.5 (-6)		3.6 (-6) 5.8 (-6)	3.8 (-6) 6.0 (-6)
)0 ₀ E	to ibo 11	D1-3	Pre Post	0.732	0.932	1.004	3.3 (-6) 5.1 (-6)		3.4 (-6) 5.3 (-6)	3.6 (-6) 5.6 (-6)
Οl		D1-4	Pre Post	0.741	0.943	1.032 1.530	2.8 (-5) 7.9 (-6)		3.7 (-5) 8.6 (-6)	4.5 (-5) 9.6 (-6)
	lon	D1-5	Pre*	0.787	1.054 0.972	1.208 1.046	4.0 (-6) 4.2 (-6)		4.8 (-6) 4.4 (-6)	5.9 (-6) 5.6 (-6)
	Coni	D1-6	Pre* Post	0.785	1.148	1.302	4.1 (-6)		4.6 (-6) 4.6 (-6)	5.0 (-6) 5.0 (-6)
	ated	D1-7 D1-8	Post Post	0.809	1.092	1.212	7.7 (-5)		9.7 (-5) 5.0 (-6)	1.2 (-4) 5.4 (-6)
160° F	Irradi	D1-9 D1-10	Post Post	0.774	1.054 0.914	1.165	9.2 (-6) 5.4 (-6)		9.6 (-6) 5.8 (-6)	1.0 (-5)
	LontroD	D1-11 D1-12	Post Post	0.721	0.920	0.985 0.884	4.3 (-6)		4.5 (-6) 3.3 (-6)	4.6 (-6) 3.5 (-6)
* Con Lea	noni ds Us	* Common Potential and Current Leads Used in Test	d Curren	† Test	Gamma Dose (Rads)		Neutron Exposure (n/cm ²)			

8.2 (13) 1.3 (12)

7.2 (6) 4.4 (6)

100° F 160° F

3-59

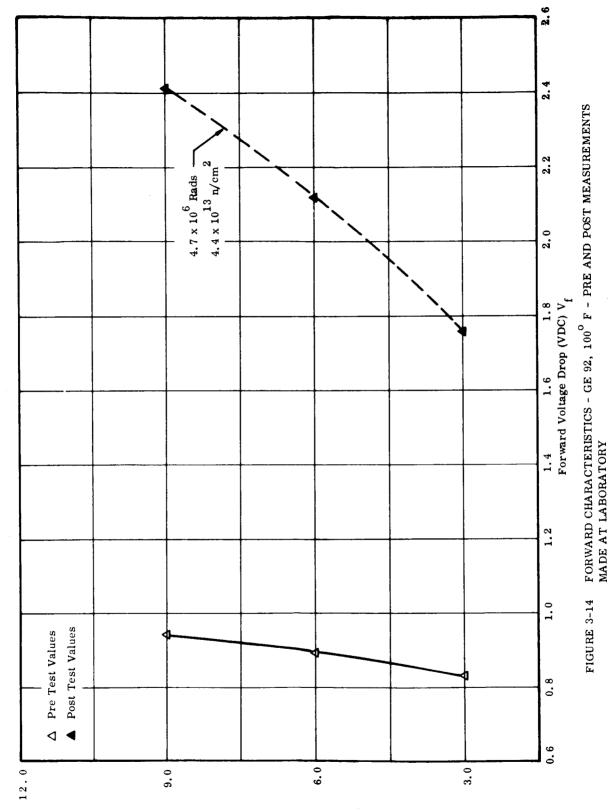
1.13 (12) 6.3 (13)

6,7 (6) 4.1 (6)

160° F 100° F

3-60

TABLE 3-37 DIODE CHARACTERISTICS, PRE AND POST MEASUREMENTS AT LABORATORY, GE-91


👸	de	Pre		V _f at I _f			IR at VR	
lde	ntification	or Post	0.120A	1.200A	2.500A	240 VDC	400 VDC	560 VDC
	D7-1	Pre* Post	0,736 1,336	0.864	0.948	1.2 (-7)	2.2 (-7)	3.4 (-7)
pa	D7-2	Pre*	0.728	0.878	0.974	1.2 (-7)	2.3 (-7)	3.5 (-7)
Irradiat	D7-3	Pre *	0.718	0.885	0.993	1.0 (-7)	3.1 (-7)	1.8 (-6) 2.5 (-6)
-	D7-4	Pre*	0.727	0.902	1.026	3.9 (-7)	5.2 (-7)	5.9 (-7)
lon	D7-5	Pre*	0.726	0.831 0.825	0.882 0.870	1.8 (-7)	4.1 (-7)	8.1 (-7)
tno⊃	D7-6	Pre Post	0.728	0.821	0.861	8.1 (-8)	1.4 (-7)	2.3 (-7)
ated	D7-7 D7-3	Post Post	0.724 0.726	0.911	0.977	3.6 (-7) 3.6 (-7)	4.5 (-7) 4.1 (-7)	6.0 (-7) 5.0 (-7)
iboul	D7-9 D7-10	Post Post	0.742	0.952 0.945	1.032 1.020	6.0 (-7)	7.9 (-7) 4.0 (-7)	1.1 (-6) 5.4 (-7)
LontroD	D7-11 D7-12	Post Post	0.719	0.825 0.824	0.862 0.860	1.5 (-7)	2.5 (-7) 3.5 (-7)	5.2 (-7) 5.1 (-7)
on P Use	Optential and d in Test	Current	Test	Gamma D (Rads)		ron Exposure //cm ²)		
	Control Irradiated Control Irradiated & Control	Diode Identification D7-1 Diode D7-1 Diode D7-2 D7-1 D7-3 D7-1 D7-1 D7-1 D7-1 D7-1 D7-1 D7-1 D7-1	and Cr	0.73	0.120A 1. 0.736 0. 1.336 2. 1.423 2. 0.728 0. 1.166 1. 1.166 1. 0.727 0. 0.728 0. 0.728 0. 0.728 0. 0.728 0. 0.728 0. 0.729 0. 0.724 0. 0.742 0. 0.742 0. 0.742 0. 0.742 0. 0.779 0. 0.719 0.	0.120A 1.200A 2.50 0.736 0.864 0.94 1.336 2.248 2.67 0.728 0.878 0.97 1.1423 2.435 2.92 0.718 0.885 0.99 1.166 1.817 2.10 0.727 0.902 1.02 1.289 2.41 0.726 0.831 0.86 0.726 0.831 0.86 0.726 0.821 0.86 0.726 0.917 0.98 0.724 0.917 0.98 0.724 0.917 0.98 0.742 0.945 1.03 0.742 0.945 1.03 0.719 0.825 0.86 0.719 0.825 0.86 0.719 0.825 0.86	V _f at 1 _f 0.120A 1.200A 2.500A 0.736 0.864 0.948 0.728 0.878 0.974 0.718 0.885 0.993 1.166 1.817 2.104 0.727 0.902 1.026 0.728 0.885 0.987 0.729 0.821 0.870 0.728 0.821 0.860 0.729 0.821 0.860 0.724 0.911 0.960 0.724 0.911 0.984 0.725 0.952 1.020 0.742 0.917 0.984 0.742 0.917 0.986 0.742 0.917 0.986 0.742 0.915 0.086 0.742 0.945 1.020 0.742 0.945 1.020 0.742 0.945 0.860 0.719 0.825 0.860 0.719 0.825 0.860 0.719 0.824 0.860 0.77 0.825 0.860 <	V _f at I _f V _f at I _f 0.120A 1.200A 2.500A 240 VDC 4 0.736 0.864 0.948 1.2 (-7) 2 1.336 2.248 2.675 9.6 (-7) 1 0.728 0.878 0.974 1.2 (-7) 1 0.728 0.885 0.993 1.0 (-6) 1 1.166 1.817 2.104 8.7 (-7) 1 1.289 2.058 2.415 9.7 (-7) 1 0.724 0.825 0.870 2.4 (-7) 1 0.728 0.825 0.870 2.4 (-7) 1 0.729 0.821 0.860 7.5 (-8) 1 0.724 0.917 0.960 7.5 (-8) 1 0.725 0.917 0.984 3.6 (-7) 2 0.724 0.917 0.984 3.6 (-7) 2 0.742 0.917 0.984 3.6 (-7) 2 0.719 0.922 1.020 1.9 (-7) 2 0.719 0.924 0.860 1.9 (-7) 2

Test *Common Potential and Current Leads Used in Test

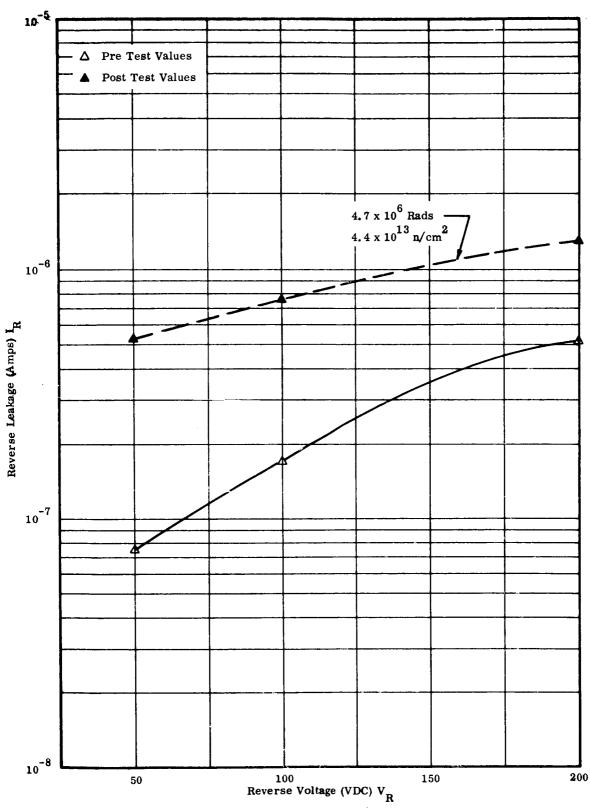
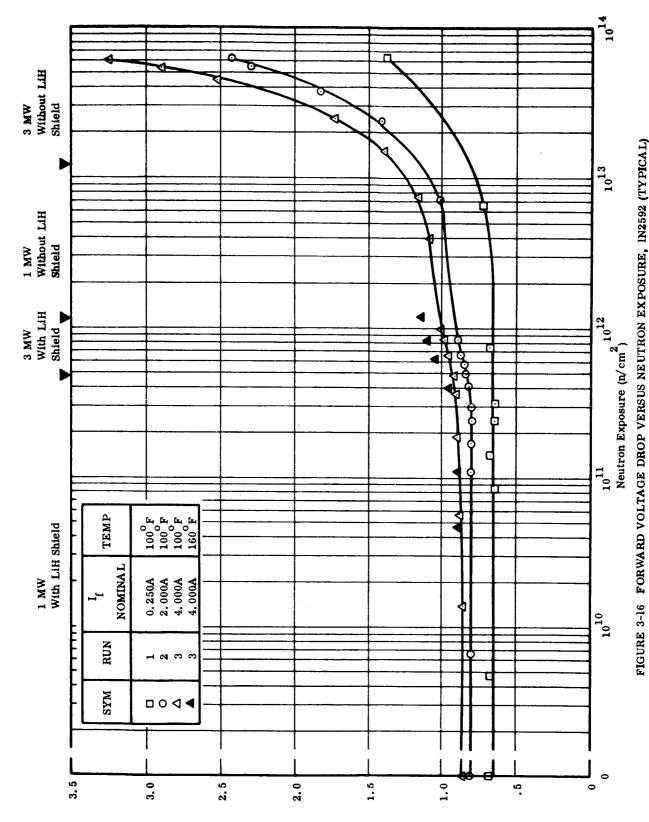
9.34 (11) 4.4 (13)

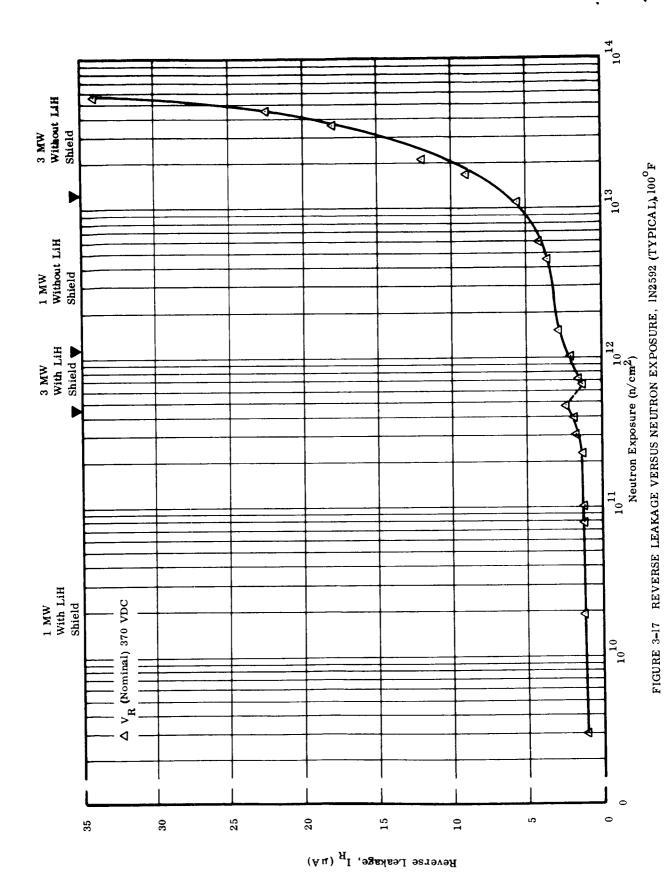
2.9 (6) 4.7 (6)

160° F 100° F

Forward Current (Amps) I_f

FIGURE 3-14


FIGURE 3-15 REVERSE CHARACTERISTICS - GE 92, 100° F - PRE AND POST MEASUREMENTS MADE AT LABORATORY

														1				Т		\neg	
-92		200 VDC	5.2 (-7)	1.3 (-6)	2.4 (-7)	1.4 (-6)	2.3 (-7)	1.5 (-6)	2.7 (-6)	2.9 (-6)	9.9 (-7)	9.5 (-7)	5.4 (-6)	3.8 (-6)	6.6 (-7)	1.0 (-6)	7.5 (-7)	2.8 (-)	2.3 (-7)	(/_) 7.7	
ORATORY, GE	IR at VR	100 VDC	1.7 (-7)	7.6 (-/)	1.2 (-7)	1.0 (-6)	9.5 (-8)	1.1 (-6)	3.8 (-7)	1.0 (-6)	4.4 (-7)	4.4 (-7)	7.5 (-7)	4.4 (-7)	4.6 (-7)	6.7 (-7)	5.0 (-7)	4.4 (-/)	1.2 (-7)	(/-) 0.1	
CHARACTERISTICS, PRE AND POST MEASUREMENTS AT LABORATORY, GE-92		50 VDC	7.6 (-8)	5.3 (-7)	9.0 (-8)	7.8 (-7)	5.2 (-8)	8.2 (-7)	5.8 (-8)	5.6 (-7)	2.5 (-7)	2.6 (-7)	1.4 (-7)	1.2 (-7)	3.7 (-7)	5.7 (-7)	3.0 (-7)	3.8 (-7)	9.2 (-8)	3.8 (-8)	
POST MEASURE	-	9.000A	0.946	2.410	0.932	1.960	0.900	1.965	0.916	2.140	1.160	0.922	0.877	0.892	1.103	1.026	0.985	0.962	0.907	0.900	
ICS, PRE AND	V _f at I _f	6.000A	0.894	2,115	0.887	1.765	0.864	1.760	0.880	1.914	1.037	0.880	0.840	0.856	1.019	0.957	0.930	0.911	0.870	0.866	
CHARACTERIST		3.000A	0.832	1.755	0.831	1.515	0.814	1.520	0.831	1.599	0.906	0.823	0.811	0.810	0.916	0.867	0.852	0.838	0.819	0.816	
DIODE	Pre	Post	Pre	Post	Pre	Post	Pre	Post	Pre	Post	Pre*	Post	Pre	Post	Post	Post	Post	Post	Post	Post	
TABLE 3-38	de	Identification		-80		D8-2		D8-3		D8-4		D8-5		D8-6	D8-7	8-80 D8-8	08-9	D8-10	D8-11	D8-12	
	Diode	lder				рә	toibr	ורוכ				lo	itno	5		ated	ibo1	1	lostr	TOD	
	+	_sə_					4	000) l								٦ ,	091			

sure			
Neutron Exposure (n/cm ²)	9.34 (11)	4.4 (13)	
Gamma Dose (Rads)	2.9 (6)	4.7 (6)	
Test	100° F	160° F	
* Common Potential and Current Leads Used in Test			

Forward Voltage Drop (VDC)

3-66

TABLE 3-39 RUN 1, FORWARD VOLTAGE CHARACTERISTICS, IN2592

Forward			Forward Volta	Forward Voltage Drop (VDC)			Neutron
Current	Control	Diodes		Irradiated	d Diodes		Exposure
(Amps)	5	9	1	2	3*	4	(n/cm ²)
0.200	0.744	0,711	0,674	769.0	0.670	0.684	(1)
0.203	0,730	0.692	0.675	969.0	0.679	0.688	(2)
0.194	0.727	0.693	0.670	0.680	0.674	0.683	4.8 (9)
0.187	0.731	0.700	0.685	0.712	0.689	0.691	$\overline{}$
0.186	0.727	0.692	0.654	0.684	0,661	0.669	8.3 (10)
0.183	0.724	0.690	0.650	0.685	0.657	0,665	1.2 (11)
0.182	0.720	0.691	0.662	0.694	0.670	0.676	1.4 (11)
0.182	0.725	0.691	0.648	0.680	0.656	0.663	1.9 (11)
0.180	0.723	0.689	0.641	0.677	0.649	0.655	2.2(11)
0.179	0.723	989.0	0.644	0.680	0.649	0.656	2.4 (11)
0.181	0.722	0.688	0.652	0.693	0.663	699.0	2.8 (11)
0.180	0.710	089.0	0.635	0.677	0.645	0.650	3.1 (11)
0.181	0.727	0.692	0,060	0,707	0.671	0.678	3.5 (11)
0.182	0.723	0.687	0.655	0.708	0.668	0.675	4.1 (11)
0.183	0.716	0.681	0.633	0.684	0.649	0.654	4.7 (11)
0.202	0.729	0,695	0.651	0.716	0.675	0.680	5.8 (11)
0.184	0.732	0.699	0.667	0.733	0.691	969.0	6.6 (11)
0.216	0.730	0.698	0.649	0.723	0.675	0.684	7.4 (11)
0.179	0.708	0.685	0.640	0.800	0.716	0.724	1)
0.202	0.730	969.0	0.814	0.510	1.374	1.408	6.3 (13)

(1) Pre Test at Ambient Temperature (2) Pre Test at 100° F

TABLE 3-40 RUN 2, FORWARD VOLTAGE CHARACTERISTICS (100° F) IN2592

Current Control Diodes Irradiated Diodes Exposure (Amps) 5 6 1 2 3 * 4 (n/cm²) 1.867 0.889 0.811 0.850 0.813 0.815 (1) 1.866 0.851 0.821 0.800 0.840 0.804 0.805 (2) 1.866 0.851 0.821 0.800 0.840 0.804 0.805 (2) 1.866 0.857 0.821 0.800 0.804 0.806 (2) 1.857 0.850 0.821 0.800 0.809 0.818 5.6 (10) 1.857 0.853 0.821 0.800 0.809 0.818 5.6 (11) 1.857 0.854 0.821 0.778 0.800 0.800 0.814 1.7 (11) 1.860 0.852 0.814 0.778 0.800 0.800 0.814 1.7 (11) 1.861 0.852 0.810 0.778 0.800 0.800 0.825 0.825	Forward			"	ge Drop (VDC)		orward Voltage Drop (VDC)	Neutron
5 6 1 2 3* 4 0.869 0.831 0.810 0.850 0.813 0.815 0.851 0.823 0.800 0.840 0.803 0.806 0.857 0.823 0.800 0.840 0.803 0.806 0.850 0.823 0.800 0.850 0.816 0.818 0.855 0.821 0.800 0.850 0.813 0.813 0.856 0.821 0.786 0.860 0.813 0.814 0.854 0.822 0.800 0.860 0.813 0.814 0.854 0.824 0.786 0.880 0.800 0.800 0.854 0.816 0.778 0.880 0.815 0.825 0.855 0.816 0.778 0.886 0.825 0.835 0.855 0.822 0.881 0.920 0.815 0.825 0.865 0.822 0.815 0.926 0.896 0.815 0.855	Current	Contro			Irradiate	I		Exposure
0.869 0.831 0.810 0.850 0.813 0.815 0.804 0.805 0.806 0.806 0.806 0.806 0.806 0.806 0.806 0.806 0.806 0.806 0.806 0.806 0.816 0.818 5.66 0.818 5.66 0.818 0.816 0.818 5.66 0.818 0.811 1.11 0.806 0.819 0.819 0.819 0.811 1.71 0.812 0.819 0.819 0.819 0.811 1.72 0.819 0.819 0.819 0.819 0.819 0.816	(Amps)	5	9		2	1 1	4	(n/cm ²)
0.851 0.821 0.800 0.840 0.804 0.806 6.6 0.865 0.823 0.800 0.840 0.803 0.806 6.6 0.860 0.824 0.810 0.816 0.816 0.806 6.6 0.850 0.822 0.800 0.800 0.813 0.819 1.1 0.856 0.821 0.800 0.800 0.813 0.813 1.7 0.854 0.821 0.798 0.869 0.813 0.814 1.9 0.854 0.820 0.800 0.809 0.809 0.809 0.800 0.855 0.816 0.798 0.889 0.820 0.806 3.0 0.856 0.816 0.798 0.836 0.806 0.835 0.806 0.835 0.856 0.822 0.815 0.822 0.815 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.8	1.867	0.869	0.831	0.810	0.850	0.813	0.815	(3)
0.857 0.800 0.840 0.803 0.806 6.66 0.860 0.824 0.810 0.854 0.816 0.818 5.6 0.850 0.825 0.800 0.830 0.810 0.810 1.1 0.855 0.821 0.800 0.850 0.813 0.813 1.7 0.856 0.821 0.798 0.860 0.813 0.813 1.7 0.854 0.814 0.798 0.860 0.800 0.801 1.7 0.854 0.814 0.798 0.820 0.800 0.800 2.4 0.855 0.816 0.798 0.820 0.800 0.802 3.0 0.855 0.820 0.815 0.928 0.825 0.825 4.8 0.856 0.820 0.820 0.803 0.959 1.805 0.855 2.403 0.855 0.820 0.820 0.820 0.805 0.880 0.885 0.855 0.820 0.855	1.866	0.851	0.821	0.800	0.840	0.804	0.806	(2)
0.860 0.824 0.810 0.854 0.816 0.818 5.6 0.850 0.850 0.890 0.890 0.810 1.1 0.852 0.821 0.800 0.850 0.813 0.813 1.7 0.858 0.821 0.798 0.860 0.813 0.814 1.7 0.854 0.820 0.800 0.800 0.800 0.800 2.4 0.854 0.816 0.798 0.873 0.800 0.800 2.4 0.855 0.816 0.798 0.889 0.800 0.800 3.0 0.840 0.810 0.796 0.888 0.826 4.1 0.826 0.855 0.820 0.815 0.928 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.855 0.855 0.855 0.855 0.855 0.855 0.855 0.855 0.865 0.865 0.865 0.865 0.865 0.865 0.865 0.865 0	1.860	0.857	0.823	0.800	0.840	0.803	0.806	
0.850 0.822 0.800 0.850 0.810 0.811 1.7 (0.812) 0.811 0.813 1.7 (0.813) 1.7 (0.813) 1.7 (0.813) 1.7 (0.813) 1.7 (0.813) 1.7 (0.814) 1.7 (0.824) 0.814 1.7 (0.824) 0.814 1.7 (0.824) 0.814 1.7 (0.824) 0.814 1.7 (0.824) 0.814 0.778 0.880 0.820 0.806 3.0 (0.806) 3.0 (0.806) 3.0 (0.806) 3.0 (0.806) 3.0 (0.806) 3.0 (0.814) 3.0 (0.806) 3.0 (0.8	1.856	0,860	0.824	0.810	0.854	0.816	0.818	_
0.855 0.821 0.860 0.850 0.810 0.813 1.7 (0.858 0.821 0.798 0.869 0.813 0.814 1.9 (0.854 0.814 0.798 0.873 0.800 0.800 2.4 (0.854 0.814 0.798 0.883 0.800 0.806 3.0 (0.855 0.816 0.796 0.880 0.820 0.825 4.1 (0.855 0.820 0.815 0.920 0.835 0.825 4.8 (0.862 0.822 0.815 0.926 0.835 0.855 4.8 (0.865 0.822 0.81 0.950 0.87 0.855 5.8 (0.865 0.822 0.824 0.97 0.880 0.87 6.6 (0.855 0.820 0.865 1.805 1.805 1.414 1.408 2.4 (0.855 0.820 1.055 2.356 1.830 2.830 2.382 2.330 0	1.857	0.850	0.822	0.800	0.850	0.809	0.810	1.1(11)
0.858 0.821 0.798 0.860 0.813 0.814 1.9 (0.854 0.820 0.800 0.800 0.800 0.800 2.4 (0.854 0.814 0.798 0.873 0.800 0.800 3.0 (0.852 0.816 0.798 0.880 0.819 0.825 4.1 (0.855 0.820 0.800 0.981 0.976 0.825 4.1 (0.856 0.822 0.815 0.928 0.825 0.835 4.8 (0.856 0.821 0.950 0.975 0.855 0.875 6.6 (0.855 0.821 0.824 0.976 0.880 0.877 6.6 (0.855 0.820 0.824 0.976 0.880 0.874 1.011 1.011 1.013 7.2 (0.855 0.820 0.825 1.805 1.810 2.825 2.305 2.282 5.3 (0.857 0.823 1.738 2.880 2.430	1.856	0.855	0.821	0.800	0.850	0.810	0.813	1.7(11)
0.854 0.820 0.869 0.800 0.800 2.4 (0.854 0.814 0.798 0.873 0.800 0.806 3.0 (0.852 0.816 0.798 0.880 0.819 0.820 3.5 (0.840 0.816 0.796 0.888 0.825 4.1 (0.825 4.1 (0.855 0.820 0.815 0.928 0.835 0.835 4.8 (4.8 (0.856 0.822 0.815 0.950 0.852 0.855 5.8 (0.855 0.822 0.831 0.950 0.871 0.872 6.6 (0.855 0.820 0.824 0.976 0.880 0.880 0.872 6.6 (0.855 0.820 0.959 1.805 1.805 1.814 1.408 2.4 (0.855 9.820 1.755 2.855 2.305 2.403 6.3 (0.857 0.823 1.238 2.880 2.430 2.403 6.3 (<	1.857	0.858	0.821	0.798	0,860	0.813	0.814	1.9 (11)
0.854 0.814 0.798 0.873 0.800 0.806 3.0 (0.852 0.816 0.798 0.880 0.819 0.820 3.5 (0.840 0.810 0.796 0.888 0.820 0.825 4.1 (0.855 0.820 0.805 0.901 0.835 0.836 4.8 (0.856 0.822 0.815 0.928 0.855 0.836 4.8 (0.856 0.822 0.831 0.950 0.871 0.872 6.6 (1) 0.856 0.820 0.824 0.976 0.880 0.872 6.5 (1) 0.855 0.820 0.824 0.976 0.880 0.880 8.4 (1) 0.855 0.820 0.824 0.976 0.880 0.880 8.4 (1) 0.855 0.820 1.055 2.356 1.814 1.408 2.40 0.857 0.823 1.238 2.835 2.430 2.403 6.3 (1)	1.849	0.854	0.820	0.800	0.869	0.800	0.800	2.4 (11)
0.852 0.816 0.798 0.880 0.819 0.820 3.5 (1) 0.840 0.810 0.796 0.888 0.820 0.825 4.1 (1) 0.855 0.820 0.805 0.901 0.835 0.836 4.8 (1) 0.856 0.822 0.815 0.928 0.852 0.855 5.8 (1) 0.865 0.822 0.831 0.950 0.871 0.872 6.6 (1) 0.856 0.820 0.824 0.976 0.880 0.880 8.4 (1) 0.855 0.820 0.865 1.182 1.011 1.013 7.2 (1) 0.855 0.820 1.055 2.356 1.830 1.820 3.7 (1) 0.857 0.823 1.238 2.880 2.430 2.403 6.3 (1)	1.847	0.854	0.814	0.798	0.873	0.800	908.0	3.0 (11)
0.840 0.810 0.796 0.888 0.820 0.825 4.1 (1) 0.855 0.820 0.805 0.901 0.835 0.836 4.8 (1) 0.856 0.822 0.815 0.928 0.852 0.855 5.8 (1) 0.862 0.828 0.831 0.950 0.871 0.872 6.6 (1) 0.856 0.820 0.824 0.976 0.880 0.880 8.4 (1) 0.851 0.820 0.865 1.182 1.011 1.013 7.2 (1) 0.855 0.820 1.055 2.356 1.830 1.820 3.7 (1) 0.855 9.820 1.775 2.885 2.305 2.282 5.3 (1) 0.857 0.823 1.238 2.880 2.430 2.403 6.3 (1)	1.860	0.852	0.816	0.798	0.880	0.819	0.820	3.5 (11)
0.855 0.820 0.805 0.901 0.835 0.836 4.8 (0.856 0.822 0.815 0.928 0.852 0.855 5.8 (0.862 0.828 0.831 0.950 0.871 0.872 6.6 (0.856 0.821 0.824 0.976 0.880 0.880 8.4 (0.855 0.820 0.865 1.182 1.011 1.013 7.2 (0.855 0.820 1.055 2.356 1.830 1.820 3.7 (0.855 9.820 1.175 2.855 2.305 2.282 5.3 (0.857 0.823 1.238 2.880 2.430 2.403 6.3 (1.856	0.840	0.810	0.796	0.888	0.820	0.825	4.1 (11)
0.856 0.822 0.815 0.928 0.852 0.855 5.8 (1) 0.862 0.828 0.831 0.950 0.871 0.872 6.6 (1) 0.856 0.821 0.824 0.976 0.880 0.880 8.4 (1) 0.855 0.820 0.865 1.182 1.011 1.013 7.2 (1) 0.855 0.850 0.959 1.805 1.414 1.408 2.4 (1) 0.855 9.820 1.055 2.356 1.830 1.820 3.7 (1) 0.857 0.823 1.238 2.880 2.430 2.403 6.3 (1)	1.863	0.855	0.820	0.805	0.901	0.835	0.836	4.8 (11)
0.862 0.828 0.831 0.950 0.871 0.872 6.6 (1) 0.856 0.824 0.976 0.880 0.880 8.4 (1) 0.855 0.820 0.865 1.182 1.011 1.013 7.2 (1) 0.851 0.800 0.959 1.805 1.414 1.408 2.4 (1) 0.855 0.820 1.055 2.356 1.830 1.820 3.7 (1) 0.855 9.820 1.175 2.855 2.305 2.282 5.3 (1) 0.857 0.823 1.238 2.880 2.430 2.403 6.3 (1)	1.851	0.856	0.822	0.815	0.928	0.852	0.855	5.8 (11)
0.856 0.824 0.976 0.880 0.880 0.855 0.820 0.865 1.182 1.011 1.013 7.2 (1) 0.855 0.820 0.959 1.805 1.414 1.408 2.4 (1) 0.855 0.820 1.055 2.356 1.830 1.820 3.7 (1) 0.855 9.820 1.175 2.855 2.305 2.282 5.3 (1) 0.857 0.823 1.238 2.880 2.430 2.403 6.3 (1)	1.873	0.862	0.828	0.831	0.950	0.871	0.872	$\overline{}$
0.855 0.820 0.865 1.182 1.011 1.013 7.2 (1 0.851 0.800 0.959 1.805 1.414 1.408 2.4 (1 0.855 0.820 1.055 2.356 1.830 1.820 3.7 (1 0.855 9.820 1.175 2.855 2.305 2.282 5.3 (1 0.857 0.823 1.238 2.880 2.430 2.403 6.3 (1	1.867	0.856	0.821	0.824	0.976	0.880	0.880	.4(
0.851 0.800 0.959 1.805 1.414 1.408 2.4 (1 0.855 0.820 1.055 2.356 1.830 1.820 3.7 (1 0.855 9.820 1.175 2.855 2.305 2.282 5.3 (1 0.857 0.823 1.238 2.880 2.430 2.403 6.3 (1 0.857 0.	1.859	0.855	0.820	0.865	1.182	1.011	1.013	2 (
0.855 0.820 1.055 2.356 1.820 3.7 (1) 0.855 9.820 1.175 2.855 2.305 2.282 5.3 (1) 0.857 0.823 1.238 2.880 2.430 2.403 6.3 (1)	1.834	0.851	0.800	0.959	1.805	1.414	1.408	4
0.855 9.820 1.175 2.855 2.305 2.282 5.3 (1) 0.857 0.823 1.238 2.880 2.430 2.403 6.3 (1)	1.841	0.855	0.820	1.055	2.356	1.830	1.820	$\overline{}$
0.857 0.823 1.238 2.880 2.430 2.403 6.3 (1	1,835	0.855	9.820	1.175	2.855	2.305	2.282	\Box
	1,861	ထ္	0.823	1.238	2.880	•	2.403	\Box
						- 1000		

Pre Test at Ambient Temperature
 Pre Test at 100° F

3-68

RUN 3, FORWARD VOLTAGE CHARACTERISTICS (100° F) 1N2592 **TABLE 3-41**

nc	ıre	2)				6			 : =	 :::	·-							_							 		
Neutron	Exposure	(n/cm^2)		=	(2)	4	5.7 (10)		0	2.6 (1)	3.6 (1)	4.8 (11	6.6 (11	7.7 (11	8.4 (11	1.0(12	4.0 (12			2.2 (13)	4.4 (13	5.4 (13)	6.0 (13				
		4		0.884	0,860	0,860	0.870	0.871	0.872	0.880	0.889	0.910	0,940	096.0	0.970	0.995	1.080	1.100	1,310	1.704	2.475	2.891	3.166				
	ed Diodes	* "		0.885	0,860	0,860	0.874	0.876	0.890	0.885	0.890	0.914	0.952	0.965	0.970	0.996	1.085	1.155	1.387	1.725	2.520	2.950	3.262				
Forward Voltage Drop (VDC)	Irradiated	2	0	0.430	0.910	0.913	0.921	0.935	0.944	0.955	0.973	1.000	1.056	1,087	1,105	1.145	1.280	1.390	1,762	2.280	3.242	3,651	4.094				
Forward Volte			ò	0.880	0,860	098.0	698.0	0.869	0.864	0.867	0.865	0.879	0.905	0.902	0.905	0.915	0.949	996.0	1.026	1.103	1.287	1.400	1.462				
	ol Diodes	9	0	704.0	0.883	0.884	0.885	0.884	0.883	0.880	0.875	0.880	0.886	0.880	0.881	0.881	0.881	0.881	0.881	0.880	0.881	0.881	0.890	•		<u> </u>	
	Control Dio	5	0 033	0.732	0.915	0.914	0.915	0.915	0.913	0.912	006.0	0.911	0.918	0.910	0.910	0.910	0.912	0.911	0.911	0.915	0.910	0.910	0.920				
Forward	Current	(Amps)	7 0 17	4.0.0	3.808	3.787	3.783	3.786	3,769	3.770	3.774	3.786	3.790	3,767	3.775	3,774	3.768	3.778	3,764	3.775	3.778	3,781	3.776	,			

(1) Pre Test at Ambient Temperature (2) Pre Test at 100° F

 (n/cm^2) Exposure Neutron (1) 4.7 (10) 1.1 (11) 3.9 (11) 6.2 (11) 8.1 (11) 1.1 (12) 0.918 0.890 0.893 0.930 0.959 0.984 RUN 3, FORWARD VOLTAGE CHARACTERISTICS (160° F) 1N2592 9 0.867 0.834 0.802 0.877 0.912 0.942 6 Irradiated Diodes Forward Voltage Drop (VDC) 0.880 0.850 0.862 0.905 0.945 0.976 ω 0.907 0.884 0.895 0.963 1.037 1.130 * _ 0.943 0.914 0.914 0.921 0.920 0.920 12 Control Diodes **TABLE 3-42** 0.900 0.864 0.860 0.860 0.867 0.873 = Forward Current (Amps) 3.921 3.921 3.972 4.103 3.998 4.004 3.867

(1) Pre Test at Ambient Temperature

TABLE 3-43 RUN 4, REVERSE LEAKAGE CHARACTERISTICS (100°F) 1N2592

			Reverse Leakage (µA)	ıkage (μΑ)			Neutron
	Control	I Diodes		Irradiated	d Diodes		Exposure
	5	9		2	3	4	(n/cm ²)
	0.412	0.999	1.012	0.579	0.912	0.601	(2)
	0.431	13.25	1,261	0.497	0.652	0.612	9 2 (9)
	0.412	13.02	0.608	0.552	0.922	3.001	1.6 (10)
	0.412	4.899	1.102	0.552	0.928	26.012	5.9 (10)
	0.402	10.598	1.181	0.586	1.012	33,319	1.1(11)
	0.402	13.869	1.212	0.592	1.043	40.099	1.5(11)
	0.432	10,399	0.821	0.609	1,102	50.007	2.0 (11)
	0.411	5.169	1.407	0.549	1.041	24,429	2.3(11)
	0.412	5.029	1.412	0.712	1,079	42.611	2.6 (11)
	0.447	4.009	1.402	0.752	1.347	43.852	3.0 (11)
	0.461	5.222	1.607	0.892	1.504	37.799	3.4 (11)
	0.442	6.099	1.605	0.999	1.801	44.379	4.1 (11)
	0.412	5.412	1.442	0.942	1.672	35,302	5.4 (11)
	0.402	3,663	1.021	0.662	1.101	5.001	6.6 (11)
	0.301	5.362	2.091	1.092	1.801	16.512	7.6 (11)
	0.411	5.699	2,301	1.222	2.049	26.099	8.4(11)
	0.482	4.429	2.388	1.325	2.267	23.049	1.0 (12)
	0.412	5.812	3,882	2.209	3.801	19,229	7.7 (12)
	0.331	5.229	20.002	16.009	24.199	70.019	6.3 (13)
	·						***************************************

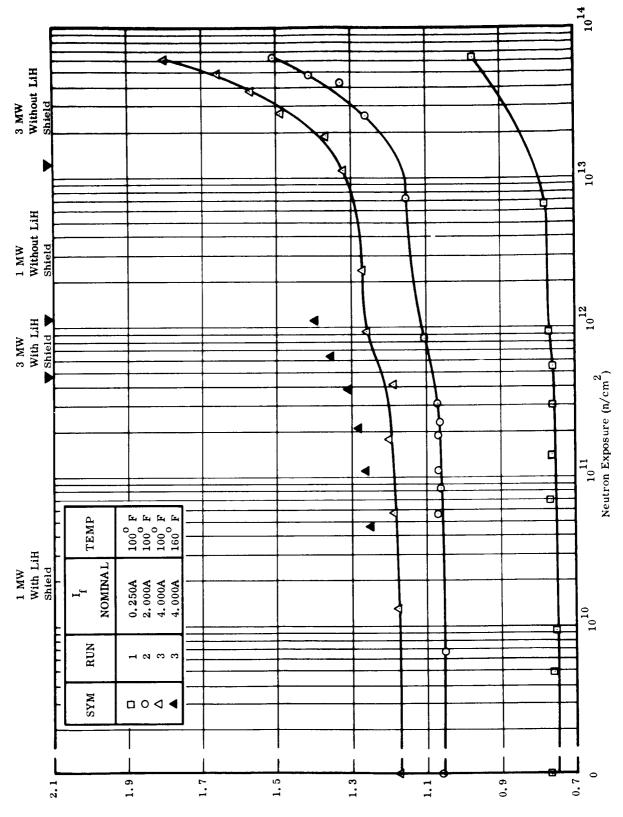

(2) Pre Test at 100º F

TABLE 3-44 RUN 5, REVERSE LEAKAGE CHARACTERISTICS(100°F) 1N2592


Reverse			Reverse Leakage (µA)	kage (µA)			Neutron
Voltage	Control	Diodes		Irradiated	I Diodes		Exposure
(VDC)	5	9		2	3	4	(n/cm ²)
		, co	001	10/0	670 1	000	6.
328.3	0.534	900.9	77/.	170.0	1.042	470.02	_
328.2	0.401	12.401	1.012	0.641	1.132	107.99	9.2 (10)
328.1	0.502	10.009	1,332	0.695	1.242	140.74	1.1 (11)
328.1	0.472	8.005	1.101	0.652	1.108	100.07	1.4 (11)
328.2	0.482	6.299	0.652	0.529	1.049	168.00	_
328.1	0.502	11.019	1.039	0.701	1,338	100.89	_
328.1	0.390	11.07	1.519	0.749	1.452	150.29	2.8 (11)
328.3	0.219	9.112	1,262	0.892	1.722	133.99	3.4 (11)
328.1	0.599	8.99	2,142	1.089	2.002	100.09	4.1 (11)
328.0	0.602	10.532	1.844	1.151	2.108	122.99	4.6 (11)
328.0	ı	1	1	ı	1	105.99	5.4 (11)
328.1	0.511	20.239	1.222	0.621	1.002	37,399	6.6 (11)
328.1	0.471	14,999	2.201	1.252	2.072	73.999	_
328.0	0.532	9.079	2.008	1.362	2.312	80.001	_
328.1	0.546	8.342	2.672	1.541	2.542	80.599	
328.0	0.542	7.629	3,992	2,628	4,301	70.004	8.4 (12)
327.8	1	ı	ı	ı	1	50.08	
327.8	ı	1	ı	10.89	20.29	20.03	
- 							

TABLE 3-45 RUN 6, REVERSE LEAKAGE CHARACTERISTICS (100°F) 1N2592

Reverse			Reverse Leakage (μ A)	skage (µA)			Neutron
Voltage	Control Dio	Diodes		Irradiated	d Diodes		Exposure
(VDC)	5	9		2	3 *	4	(n/cm ₂)
371.8	0.572	9.019	1.362	0.712	1.172	0.901	3.1 (9)
371.8	0.612	2.999	1.002	0.712	1.242	ı	1.9 (10)
371.8	0.539	10.007	1,402	0.742	1.302	200.07	7.7 (10)
371.7	0.571	25.799	0.802	0.672	1.242	342.99	1.0(11)
371.6	0.601	16.329	1.241	0.771	1.442	329.59	1.8 (11)
371.7	0.601	7.799	1.175	0.701	1.301	244.00	2.3 (11)
371.6	ŧ	14.899	0.998	0.812	1.641	314.19	2.8 (11)
371.8	ı	9.469	1.002	0.892	1.672	316.99	3.1 (11)
371.5	ı	10.004	1.502	0.928	1.811	300.09	3.9 (11)
371.6	0.499	12,631	2.053	1.262	2.452	200.04	4.7 (11)
371.7	0.602	9.602	1.102	0.711	1.286	200.07	6.6 (11)
371.6	ı	13,439	1.502	0.882	1.612	100.0%	7.4 (11)
370.2	0.541	3,372	1.462	1.002	1.942	226.99	9.2 (11)
370.2	0.552	3.427	1.802	1.104	2.052	59.999	1.0 (12)
371.5	0.622	12.069	2.702	1.601	2,832	139.99	1.5 (12)
371.5	0.639	12.069	2.781	1.831	3.042	100.00	$\overline{}$
371.6	0.322	10.499	3.342	2.149	3.602	100.03	4.5 (12)
371.6	0.301	13,199	3.912	2,399	4.072	100.79	5.8 (12)
371.6	0.601	12,799	4.332	2.862	5.042	130.05	9.2 (12)
371.6	0.602	13,005	1	3,399	5.602	110.01	1.1 (13)
371.6	0.549	13,001	7,723	5.792	9.049	142.99	1.1 (13)
371.6	3.099	12,402	9,602	7.631	12.032	1	2.1 (13)
371.6	ı	12.44	10.59	13.99	17.99	191.00	3.6 (13)
371.6	0.582	13,372	20.019	22.552	30.141	181.39	4.5 (13)
371.6	ı	12.679	32.069	34.132	43.001	170.69	5.6 (13)

Forward Voltage Drop (VDC)

Reverse Leakage, IR (uA)

RUN 1, FORWARD VOLTAGE CHARACTERISTICS (100° F), IN3878 **TABLE 3-46**

Neutron	Exposure	(n/cm^2)	(1)	÷ 6		4.7 (9)	7.2 (7)	(01) 6.0	(E) :-	1.4 (11)	1.6 (11)	1.9 (11)	2.4 (11)	3.0 (11)	3.1 (11)	5.1 (11)	4.6 (11)	5.5 (11)	6.6 (11)	7.4 (11)	9.2 (11)	<u>-</u>	6.3 (13)
		* 4	0.782	20/10	67.0	0.765	0.75	0.750	0.762	0.765	0.764	0.758	0.754	0.760	0.754	0.740	0.740	0,760	0.769	0.780	0.774	0.780	0.973
	d Diodes	3	902 0	0 405	0,00	0.070	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.080	0.690	0.694	089.0	0.684	0.684	0.678	0.670	0.670	0.689	0.685	0.693	0.705	0.695	0,695	008.0
Forward Voltage Drop (VDC)	Irradiated	2	0.807	700	0.790	0.783		7//-0	0.784	0.785	0.785	0.780	0.780	0,785	0.779	0.764	0.764	0.790	0.798	0.820	0.811	0.837	1.244
Forward Volta	,	-	0.797	787	†00 /// ()	0.77	77.0	0.772	0.7/7	08/.0	0.779	0.774	0.774	0.780	0.776	0.761	0.764	0.767	0.790	0.810	0.805	0.819	1.105
	l Diodes	9	0.759	0 738	0.733	0.730	867.0	07.70	0.730	0./30	0.730	0.720	0.725	0.729	0.720	0.700	0.711	0.724	0.730	0.746	0.730	0.726	0.740
	Control	5	0.818	0 790	0 784	0 780	0 770	0,770	0.703	08/.0	0.780	0.778	0.775	0.778	0.765	0.742	0.754	0.771	0.782	0.797	0.780	0.770	0.791
Forward	Current	(Amps)	0.202	0.205	0 196	0 191	0 185	50.0		0.183	0.192	0.184	0.182	0.195	0.191	0.180	0.195	0.181	0.189	0.218	0.196	0.180	0.204

(1) Pre Test at Ambient Temperature(2) Pre Test at 100° F

	Neutron	Exposure 2	(n/cm ⁺)	(E)	(2)	9	_	8.4 (10)	1.1 (11)	(1.) 6.1	2.3(11)	2.5(11)	3.1 (11)	4.1 (11)	_	6.3(11)	$\overline{}$	8.4 (11)	7.2 (12)	2.6 (13)	4.3 (13)	$\overline{}$	6.3 (13)				
IN3878			* *	1.074	1.058	1.050	1.070	1.061	1.064	1.064	1.061	1.081	1,063	1.063	1.080	1.0%	1.100	1.100	1.147	1.266	1.330	1.415	1.516				
ISTICS (100° F)		Diodes	3	0.929	0.915	0.915	0.924	0.916	0.907	0.920	0.920	0.920	0.920	0.914	0.928	0.940	0.949	0.940	0.968	1.040	1.110	1.130	1.195				
SE CHARACTER	e Drop (VDC)	Irradiated	2	1,104	1,091	1.090	1.104	1.098	1.100	1.108	1.110	1.110	1.114	1.110	1.131	1.151	1.170	1.160	1.260	1.510	1.701	1.825	2.007				
RUN 2, FORWARD VOLTAGE CHARACTERISTICS (100 [°] F) IN3878	Forward Voltage Drop (VDC)			1 098	1.085	1.084	1.095	1.091	1.094	1.099	1.102	1.104	1.108	1.104	1.120	1.142	1.156	1.153	1.225	1.409	1.581	1.640	1.772			• • • • • • • • • • • • • • • • • • • •	
		Diodes	9	866 0	0.986	0.981	0.988	0.984	0.980	0.984	0.985	0.983	0.984	0.970	0.985	0.987	0.991	0.984	0.981	0.982	0.981	0.980	0.986		 		
TABLE 3-47		Control	5	1 070	1.057	1.051	1.060	1.059	1.051	1.055	1.058	1.054	1.054	1.041	1.055	1.060	1.068	1.055	1.055	1.051	1.050	1.054	1.058				
	Forward	Current	(Amps)	0.20	1.0/7	1.861	1.857	1.858	1.858	1.857	1.861	1.858	1.879	1.854	1.863	1.871	1.931	1.867	1.859	1.855	1.835	1.839	1.861				

(1) Pre Test at Ambient Temperature (2) Pre Test at $100^{\rm O}$ F

TABLE 3-48 RUN 3, FORWARD VOLTAGE CHARACTERISTICS (100° F), 1N3878

				$\overline{}$	_	_			_									~			_				 	_	 	_
	Neutron	Exposure	(n/cm ²)	(1)	=	(2)	1.4 (10)	5.7 (10)	_	1.8 (11)	<u>က</u>	∞	_	6	/	8.4 (11)	9.2 (11)	2.4 (12)	\Box	1.9 (13)	2.7 (13)	\Box	=	6.0 (13)				
0 /00 11 1/			* 4		- 184	1.176	1.175	1.185	1.187	1.200	1.190	1.195	1.191	1.220	1.230	1.234	1.259	1.266	1.321	1.365	1.487	1.570	1.661	1.803				
		d Diodes	3	0.0.	810.1	1.010	1.009	1.018	1.011	1.033	1.016	1.022	1.014	1.040	1.041	1.045	1.065	1.062	1.100	1.125	1.207	1.251	1.316	1.403				
	ge Drop (VDC)	Irradiated	2	100 1	1.23	1.222	1.231	1.235	1.231	1.262	1.248	1.255	1.251	1.290	1.314	1,320	1.353	1.381	1.480	1.645	1.817	1.995	2.001	2.462				
	Forward Voltage		ı	/CC 1	1.236	1.229	1.230	1.240	1.244	1.267	1.253	1.262	1.256	1.296	1.311	1.320	1.349	1.371	1.400	1.570	1.700	1.831	•	2.177				
		l Diodes	9		. 103	1.093	1.091	1.095	1.090	1.106	1.094	1.090	1.084	1.095	1.090	1.090	1.105	1.092	1.090	1.090	1.104	1.091	1.0%	1.106				
		Control	5	1 122	8	1.154	1.151	1.150	1.155	1.169	1.152	1.151	1.140	1.154	1.155	1.150	1.167	1.154	1.151	1.151	1.164	1.150	1.155	1.168				
	Forward	Current	(Amps)	2 707	3./4/	3.787	3.775	3.772	3.773	3.744	3.770	3.767	3.768	3.775	3.753	3.763	3.754	3.759	3.755	3.755	3.770	3.765	3.767	3.765				

(1) Pre Test at Ambient Temperature (2) Pre Test at 100° F

Exposure (n/cm^2) Neutron (1) 4.7 (10) 1.1 (11) 2.1 (11) 3.9 (11) 6.3 (11) 1.1 (12) RUN 3, FORWARD VOLTAGE CHARACTERISTICS (160° F), 1N3878 2 1.451 1.141 1.100 1.185 1.205 1.346 1.050 1.050 1.060 1.074 1.084 0 Irradiated Diodes Forward Voltage Drop (VDC) ..502 ..200 ..204 ..240 ..254 ω .296 .254 .260 .313 .354 * 1.332 1.139 1.144 1.147 1.140 1.130 12 Control Diodes **TABLE 3-49** 1.247 1.045 1.042 1.054 1.054 1.039 = Forward Current (Amps) 3.960 3.960 3.958 4.242 4.078 4.099 3.845

(1) Pre Test at Ambient Temperature

Exposure (n/cm^2) Veutron 222222222222 ΞĒ (1) (2) 1.6 (2) 2.3 (2) 3.0 (3) 3.4 (3) 1.4 4 4 4 6 6 8 . 7.1 10.231 10.701 11.401 11.892 15.004 15.507 17.298 18.002 11.012 11.002 10.602 11.449 5.412 9.132 9.904 9.009 9.812 RUN 4, REVERSE LEAKAGE CHARACTERISTICS (100° F), 1N3878 4 14.692 15.401 9.843 9.902 9.099 10.391 15.029 6.161 8.699 9.229 9.009 9.009 9.311 10.232 10.612 12.079 13.052 14.401 က Irradiated Diodes 45.311 46.782 47.499 52.713 59.301 62.001 65.739 67.099 68.402 52.702 58.049 60.399 60.699 39.742 Reverse Leakage (µA) ~ 12.529 13.007 14.106 15.005 18.099 19.672 22.002 23.059 24.007 13.299 15.002 15.001 6.502 10.007 11.005 12.222 12.042 3.962 7.249 7.240 7.242 7.231 7.231 7.703 8.101 8.842 10.455 11.101 12.807 13.542 8.142 7.632 7.052 9 Control Diodes **TABLE 3-50** 3.502 5.401 5.402 5.431 5.482 5.701 6.001 6.402 7.547 8.007 9.232 4.699 5.642 5.149 10.392 2 Voltage Reverse 285.1 284.9 284.9 284.9 284.9 284.9 284.9 284.9 (VDC) 285.1 285.0 284.9 284.9 285.1 285.1 285.1

(1) Pre Test at Ambient (2) Pre Test at 100° F

TABLE 3-51 RUN 5, REVERSE LEAKAGE CHARACTERISTICS (100° F), 1N3878

0.00011 1/1 001) 0	Neutron		3 4 (n/cm ²)	7 442 5 608 (1)	6.602	9.822 9.521 9.2 (9)	7.6	10.332	10.962		18.312	18.901	·	11.325 11.069 4.9 (11)		11.701 7.7	786	1.0	392 13.362 8.4 (18.610 6.3 (1
יסו כאוכואים באיטיי באים א	Reverse Leakage (µA)	Irradiated Diodes	2		_	40.002								·· -,	-		80.302	81.099	88.003	
ייבי בויסר ברטו	Reverse	Diodes	9	4.212		7.589 11.482		7.636 13.104										8.675 19.008	8.458 22.412	5.590 30.040
		Control Diodes	5	3.701	5.702	5.609	5.601	5.642	5.842	6.101	9.605	10.141	10.842	6.202	5.402	5.881	6.352	6.402	6.212	3.590
	Reverse	Voltage	(VDC)	327.9	328.0	328.4	328.2	328.1	328.2	327.8	328.1	328.1	328.1	328.1	328.1	328.1	328.1	328.1	320.0	327.9

(1) Pre Test at Ambient(2) Pre Test at 100° F

TABLE 3-52 RUN 6, REVERSE LEAKAGE CHARACTERISTICS (100° F) 1N3878

O STOCK O	ו אפרר ט-טג	202	Reverse Leakage (u.A.)	Leakage (u.A)			Neutron
200							т Э
Voltage	Control Dio	Diodes		Irradiated	Diodes		Lxpxs0le 2
(VDC)	5	9	*	2	3	4	(n/cm ⁻)
-	4 012	4 498	2 302	34 579	9,302	5,921	3
_	7.0.4	0/1.1	400.	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	300.		<u> </u>
_	6.012	8.061	11.842	44.089	12.502	10.152	(7)
_	6.004	8.172	12.592	43.262	12.004	10.308	_
_	5.842	7.862	12.604	47.301	11.404	692.6	6.4 (10)
_	5.811	7.871	12.801	50.005	11.212	10.102	1.1 (11)
	6.112	8.132	13.099	60.001	12.401	11.512	2.0 (11)
_	6.301	8.501	14.499	61.001	12.001	11.829	2.4 (11)
	7.042	8.873	17.004	65.039	13.001	13.739	3.1 (11)
_	8.802	12.579	22.069	80.019	16.499	17.582	3.6 (11)
_	10.501	15.241	26.232	80.899	18,001	19.901	4.4 (11)
	11.112	16.112	27.007	87.079	19.852	21.042	4.7 (11)
			12.990	73.990	10.240	10.072	5.7 (11)
	5.712	7.891	13.652	73.999	9.408	8.722	6.6 (11)
	5.702	7.789	15.729	80.079	11.352		7.4 (11)
_	6.632	9.296	20.042	80.039	13.099	13.332	8.4 (11)
I	6.452	8.914	22.702	90.001	13.699	13,399	\Box
_	6.402	8.952	23.329	90.002	14.032	14.019	5.8 (12)
371.6	6.442	8.932	32,329	110.29	17.701	14.999	2.1 (13)
	6.312	8.952	41.201	130.39	•	24.101	0.
371.6	6.452	8.869	56.872	136.99	25.699	29.005	5.6 (13)
* *****		-					<u></u>
			7				

(1) Pre Test at Ambient Temperature

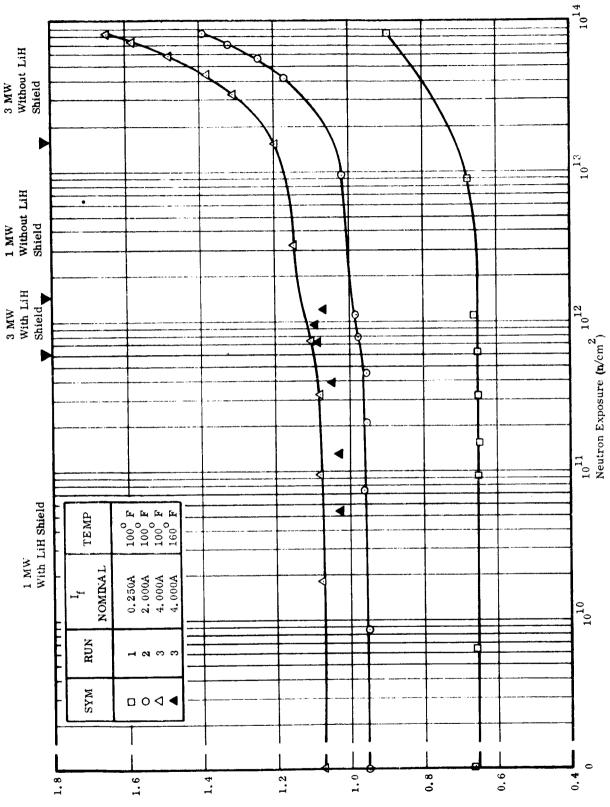
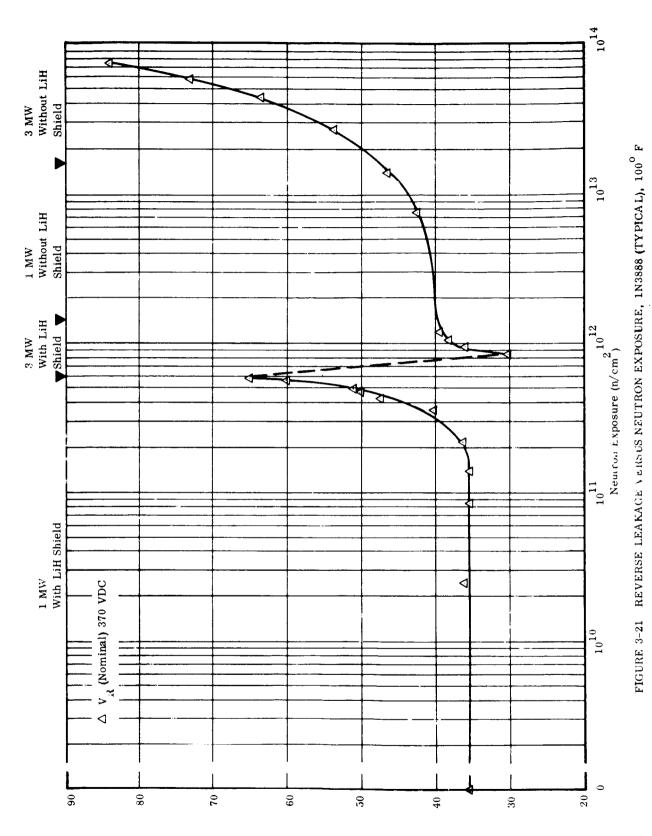
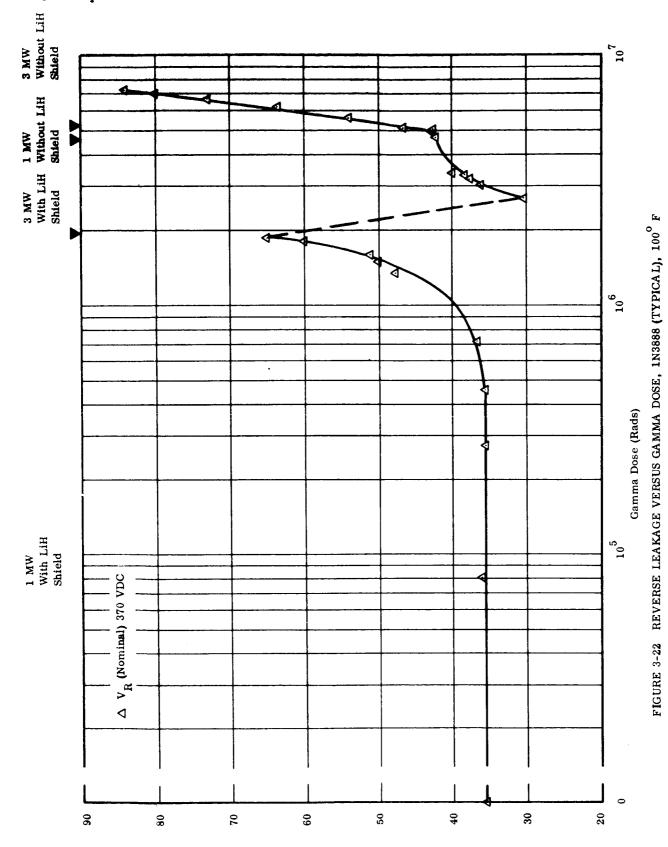




FIGURE 3-20 FORWARD VOLTAGE DROP VERSUS NEUTRON EXPOSURE, 1N3888 (TYPICAL)

Forward Voltage Drop (VDC)

Reverse Lealage, I_R (uA)

Reverse Leakage, I_R (μA)

3-85

TABLE 3-53 RUN 1, FORWARD VOLTAGE CHARACTERISTICS, 100° F, 1N3888

Neutron	Exposure	(n/cm ²)	(1)	(2)	6.4 (9)		1.3(11)	1.5(11)	1.9 (11)	2.3 (11)	2.7 (11)	3.1 (11)	3.6 (11)	4.3(11)	4.8 (11)	6.1 (11)	7.1 (11)	8.6 (11)	1.1 (12)	1.2 (12)	\Box	8.2 (13)
		4	0.635	0.631	0.631	0.620	0.632	0.621	0.635	0.629	0.634	0.620	0.631	0.615	0.622	0.619	0.623	0.631	0.636	0.625	0.639	0.822
	d Diodes	3	0,661	0.650	0.644	0.608	0.646	0.631	0.649	0.634	0.650	0.638	0.643	0.631	0.630	0.634	0.640	0.647	0.643	0.644	0.655	0.866
ge Drop (VDC)	Irradiated	2	0.643	0.636	0.630	0.615	0.634	0.625	0.634	0.621	0.635	0.620	0.630	0.614	0.620	0.624	0.626	0.634	0.628	0.630	•	0.834
Forward Voltage		*	0.670	0.665	0,060	0.654	0.661	0.653	0,060	0.650	0.665	0.651	0,060	0.648	0.654	0.650	0.655	0.668	0.659	0.661	•	0.893
	Diodes	9	0.703	0.674	699.0	0.664	0.664	0.663	0.661	0,660	999.0	0,060	0.661	0.650	0.641	0.649	0,660	0.665	0.656	0.657	0.651	0.674
	Control	5	0.727	0.704	0.701	0.695	0.695	0.695	969.0	0.693	0.691	0.690	0.693	0.681	0.684	0.680	0.689	0.697	0.689	0.689	0.686	0.705
Forward	Current	(Amps)	0.203	. 4	0.198		_	_	_				_	_		-	0.184		,	0.187	•	0.206

(1) Pre Test at Ambient Temperature (2) Pre Test at 100° F

TABLE 3-54 RUN 2, FORWARD VOLTAGE CHARACTERISTICS (100°F) 1N3888

Current Control Diodes (Amps) 5 6 1.883 0.947 0.933 1.865 0.930 0.933 1.862 0.930 0.934 1.862 0.930 0.935 1.863 0.930 0.935 1.864 0.926 0.934 1.865 0.926 0.935 1.865 0.926 0.935 1.865 0.926 0.936 1.865 0.926 0.937 1.865 0.930 0.938 1.865 0.930 0.938 1.867 0.928 0.934 1.867 0.928 0.934 1.871 0.928 0.934 1.884 0.930 0.932 1.884 0.930 0.932 1.884 0.930 0.932 1.839 0.923 0.932	des 6 6.930 1.933 1.933 1.935 1.935 1.935 1.936	0.970 0.950 0.950 0.959 0.951 0.953 0.953	1 Pradiated 2 0.903 0.907 0.910 0.910 0.910 0.910 0.910	3 0.920 0.900 0.900 0.915 0.901 0.905 0.907	0.897	Exposure
0.947 0.930 0.930 0.930 0.930 0.930 0.920 0.920 0.928 0.928 0.928 0.928 0.928 0.928 0.928	, 963 , 930 , 933 , 941 , 930 , 935 , 936	0.970 0.950 0.950 0.959 0.951 0.953 0.954 0.957	0.903 0.907 0.910 0.917 0.900 0.910 0.910	3 0.920 0.900 0.900 0.915 0.901 0.905 0.905	0.897	`
0.947 0.930 0.933 0.930 0.930 0.930 0.920 0.928 0.928 0.928 0.928 0.928 0.928 0.928 0.928 0.928	. 983 . 930 . 935 . 936 . 936 . 936	0.970 0.950 0.950 0.959 0.951 0.953 0.954 0.957	0.903 0.907 0.910 0.917 0.900 0.910	0.920 0.900 0.900 0.915 0.901 0.905 0.907	0.897	(n/cm ⁻) .
0.930 0.934 0.933 0.930 0.930 0.921 0.920 0.928 0.928 0.928 0.928 0.928 0.928 0.928 0.928	. 930 . 933 . 935 . 935 . 935	0.950 0.950 0.959 0.951 0.953 0.954 0.957	0.907 0.910 0.917 0.900 0.910 0.910	0.900 0.900 0.901 0.901 0.905 0.907	0880	(1)
0.930 0.934 0.930 0.930 0.930 0.921 0.928 0.928 0.928 0.928 0.928 0.928 0.928	. 933 . 936 . 936 . 936 . 931	0.959 0.959 0.951 0.953 0.954 0.960	0.910 0.917 0.900 0.910 0.910	0.900 0.915 0.901 0.905 0.907		(-)
0.934 0.900 0.930 0.930 0.921 0.928 0.928 0.938 0.938 0.928 0.928 0.928 0.928	. 941 . 935 . 935 . 931	0.959 0.951 0.953 0.954 0.960 0.957	0.917 0.900 0.910 0.910	0.915 0.901 0.905 0.907 0.911	0.890	(5)
0.900 0.930 0.930 0.921 0.928 0.928 0.932 0.932 0.932 0.932 0.928 0.929 0.927	. 935 . 935 . 931	0.951 0.953 0.954 0.963 0.957	0.900 0.910 0.910	0.901 0.905 0.907 0.911	0.889	_
0.930 0.930 0.930 0.921 0.920 0.928 0.932 0.932 0.928 0.929 0.929 0.927	.935 .936 .931	0.953 0.954 0.963 0.957 0.957	0.910	0.905	0.880	(1.5)
0.930 0.930 0.921 0.920 0.928 0.932 0.932 0.928 0.929 0.929	.936	0.954 0.963 0.957 0.953	0.910	0.907	0.881	1.4 (11)
0.930 0.921 0.920 0.928 0.932 0.932 0.928 0.929 0.929	.931	0.960 0.957 0.950	0.912	0.911	0.881	2.1 (11)
0.921 0.920 0.916 0.930 0.932 0.928 0.928 0.929 0.929 0.927	-	0.957	1	010	0.889	2.7 (11)
0.920 0.916 0.928 0.932 0.932 0.928 0.929 0.929 0.927	. 730	0.950	0.911	-	0.880	3.6 (11)
0.928 0.928 0.930 0.932 0.928 0.900 0.929 0.927	.925		0.904	0.907	0.882	2
0.928 0.930 0.932 0.928 0.929 0.927 0.923	.914	0.943	0.900	0.904	0.874	.5
0.930 0.932 0.928 0.900 0.927 0.927	.931	0.965	0.920	0.919	0.890	6.1 (11)
0.932 0.928 0.900 0.929 0.927 0.923	. 935	0.975	0.929	0.927	0.900	.7
0.928 0.900 0.929 0.927 0.923	.940	0.973	0.930	0.930	0.900	, 9.
0.900 0.929 0.927 0.923	. 934	0.981	0.936	0.931	0.904	1.1 (12)
0.929 C 0.927 C 0.923 C	. 930	1.020	0.970	0.970	0.937	9.4 (12)
0.927 0	. 930	1.174	1.100	1.120	1.060	.2 (1
0.923 0.0	. 930	1.245	1.170	1.160	1.100	\ <u></u>
		1.321	1.236	1.260	1.180	5
0.933 0.	. 930	1.391	1.301	1.330	1.237	8.2 (13)

(1) Pre Test at Ambient (2) Pre Test at 100 F

TABLE 3-55 RUN 3, FORWARD VOLTAGE CHARACTERISTICS (100^oF) 1N3888

	Forward Voltage Drop (VDC)	Irradiated Diodes	* 2 3 4 (n/cm^2)	90 1 000 1 000	1,000	1.020 1.014 990	1.024 1.019 9.4	1.037 1.020 994 1.7	866.	1.030 1.029 1.000 3.2	1.024 1.030 .998 4.8	1.040 1.050 1.015 7.3	1.050	1.036 1.067 1.00	1.086 1.090 1.055 3.27	1.110 1.115 1.1070 9.9	1.137 1.140 1.087 1.5 (1.230 1.205 1.185 3.2 (1.291 1.315 1.247 4.3 (1.375 1.406 1.323 5.7 (1.453 8.2 (
1		Diodes	9	1.000	1.041	1.045	1.045	1.044	1.044	1.040	1.030	1.044	1.032	1.041	1.041	1.041	1.041	1.042	1.041	1.043	1.043	1.046			
		Control D	5	1.031	1.011	1.015	1.016	1.01	1.014	4.0.1	000.	1 023	1.016	1.015	1.016	1.015	1.011	1.016	1.016	1.011	1.014	/00	•		
	Forward	Current	(Amps)	3.778	3.781	3.759	3.763	3.763	3.756	3.760	3 757	3.766	3.743	3.744	3.743	3.752	3.739	3.750	3.760	3.753	3.753	3.765			

(1) Pre Test at Ambient Temperature
 (2) Pre Test at 100°F

TABLE 3-56 RUN 3, FORWARD VOLTAGE CHARACTERISTICS (160°F) 1N3888

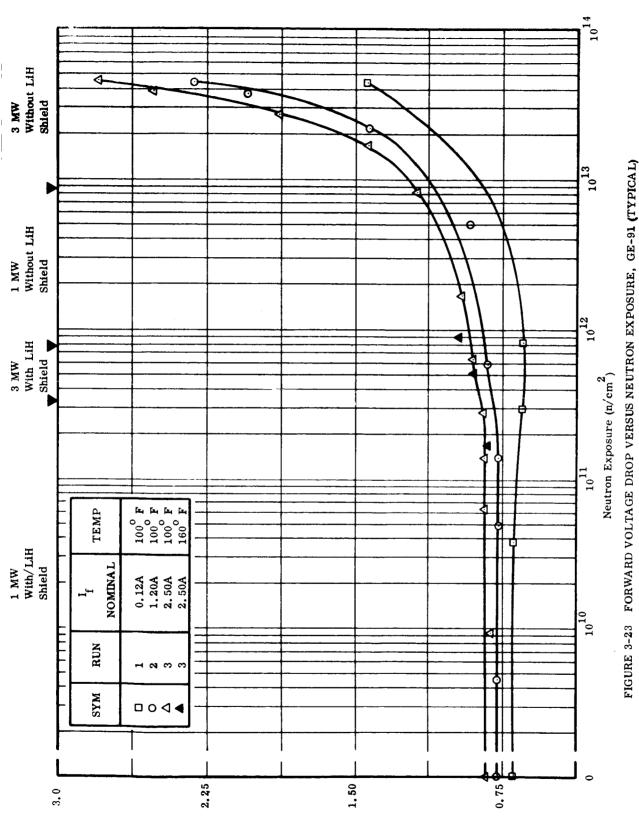
Neutron	Exposure	(n/cm ²)	(1) 5.5 (10) 1.3 (11) 3.9 (11) 7.3 (11) 9.5 (11) 1.2 (12)
		* 4	1.110 1.030 1.033 1.085 1.097 1.074
	Diodes	3	0.984 0.900 0.925 0.940 0.971 0.949
Forward Voltage Drop (VDC)	Irradiated	2	0.911 0.850 0.864 0.903 0.911 0.890
Forward Volta			1.150 1.007 1.000 1.090 1.124 1.141 1.101
	Control Diodes	9	0.887 0.839 0.837 0.841 0.850
	Contro	5	0.963 0.900 0.903 0.904 0.915 0.894
Forward	Current	(Amps)	3.984 3.974 4.049 3.940 3.820

(1) Pre Test at Ambient Temperature

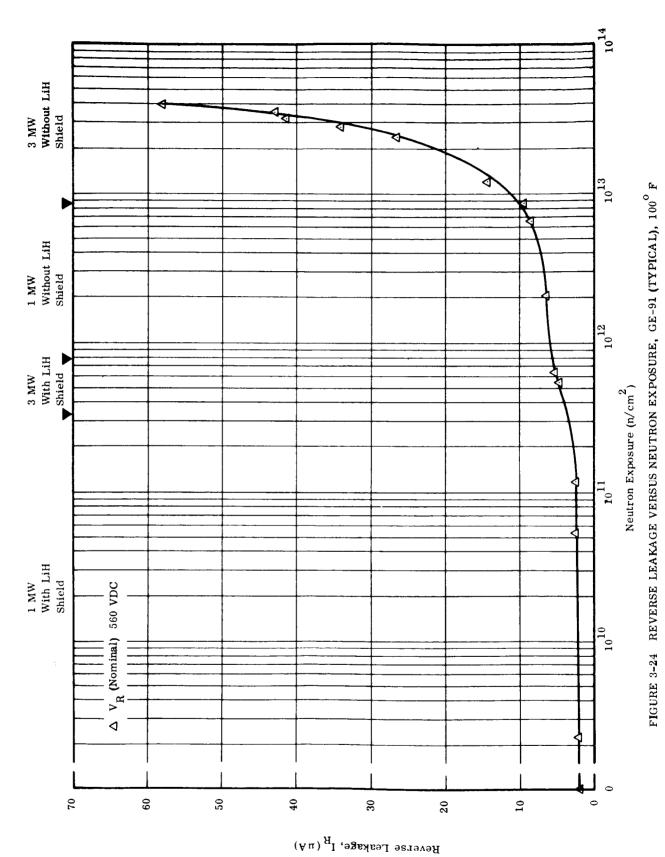
TABLE 3-57 RUN 4, REVERSE LEAKAGE CHARACTERISTICS (100°F) 1N3888

Neutron	Exposure	(n/cm ²)	(1)	(2)	1.2 (10)	7.7 (10)	9.6 (10)	1.9 (11)	2.7 (11)	3.4 (11)	4.4 (11)	5.3 (11)	6.0(11)	6.4 (11)	6.9 (11)	8.8 (11)	9.9 (11)	1.1 (12)	8.2 (13)
		4	12.399	23.409	23.221	23.049	25.602	25.079	26.231	29.201	39.699	40.002	54.609	29.232	28.707	26.042	28.629	30.302	60.649
	Diodes	က	32.552	31.792	30.019	32.049	ı	30.199	33.002	43.059	58.999	67.102	83.039	54.659	ı	40.004	200.09	60.729	900.69
(αge (μΑ)	Irradiated	2	11.499	21.769	21.099	23.032	24.772	25.080	25.999	30.091	40.059	51.683	59.002	42.611	52.209	54.008	61.999	1	1
Reverse Leakage (µA)			10.862	29.501	31.002	30.309	31.202	31.429	31,389	34.101	45.405	54.009	60.03	30.499	32.692	30.079	31.399	34.219	63.029
	Diodes	9	10.119	18.502	18.202	17.442	18.262	18.072	18.222	20.212	26.009	32.691	37.142	20.032	19.102	17.232	18.479	20.049	18.232
	Control	5	9.802	17.501	17.332	16.602	17.412	17.243	17.329	19.201	24.801	30.069	35.001	19.099	18.007	16.001	17.622	19.142	17.432
Reverse	Voltage	(VDC)	284.6	284.9	285.2	285.0	285.0	284.9	285.0	285.0	285.1	284.8	284.8	284.8	284.8	284.8	284.9	284.8	284.4

(1) Pre Test at Ambient Temperature(2) Pre Test at 100 F


Voltage			Keverse Leakage (µA)	kage (µA)			Neutron
(()	Control Dio	Diodes		Irradiate	Irradiated Diodes		Exposure
(VDC)	5	9	_	2	3	4	(n/cm ²)
328.0	10.942	10.801	100 01	11 802	47 800	1.2	(1)
330 0	10 7 01		50.00	700.11	4/.077	13.202	E)
320.0	10.029	19.031	32.001	21.069	54.399	23.099	(2)
328.1	19.105	19.299	31.001	23.042	34.199	24.382	1.7 (9)
328.2	18.502	18.712	32.701	25.108	30.499	25.101	8.2 (10)
328.1	19.005	19.112	33.002	25.099	33.019	26.999	1,7(11)
328.2	19.001	19.519	34.069	28.141	38.069	27.751	2 9 (11)
328.2	19.531	19.612	34.605	30.627	40.049	29.172	3.1 (11)
328.2	21.892	22.101	38.512	30.999	70.899	31,172	3 8 (11)
328.4	27.001	27.331	46.499	44.102	72.999	41.004	4.4(11)
328.1	34.102	34.839	59.019	55.499	78.999	50.312	5 5 (11)
328.1	38.001	38.701	64.999	63.069	87,003	56,099	(11) 6.0
328.1	20.299	20.629	35.212	48.007	74.949	30,002	6.4(11)
328.1	17.802	18.011	32.405	30.999	64.499	27.002	0.1(1)
328.1	19.412	19.672	34.399	91,001	669.68		0 0 (11)
328.1	20.079	21.001	35,799	125.99	90.039	31 300	, , , (1-)
328.1	21.101	21.342	37.219	150.00	100.29	30.059	1.3(12)
328.0	20.699	20.001	40.699	202.99	96.602	35.001	1.1 (13)

(1) Pre Test at Ambient Temperature
(2) Pre Test at 100°F


TABLE 3-59 RUN 6, REVERSE LEAKAGE CHARACTERISTICS (100°F) 1N3888

Reverse			Reverse Leakage (μA)	skage (µA)			Neutron
Voltage	Control	l Diodes		Irradiated	ed Diodes		Exposure
(VDC)	5	9	*	2	3	4	(n/cm ²)
	12.811	11.631	21.032	12.102	63.659	13.602	3
371.6	21.039	20.111	35.429	22.407	73.001	24.269	(2)
	21.682	20.332	36.082	27.004	23.999	27.279	2.5 (10)
	21.099	19.802	35,389	25.599	35.059	26.601	8.6 (10)
	21.142	19.801	35.322	27.721	36.599	20.049	1.4 (11)
	21.701	20.232	36.379	29.239	40.199	28.229	2.2 (11)
	21.049	20.119	36.099	30.005	45.479	27.799	2.8 (11)
	24.229	22.692	40.207	35.399	55.199	32.479	3.6 (11)
	22.999	26.382	47.599	43.202	72.299	39.004	4.3 (11)
	21.802	20,001	50.049	50.002	80.999	45.079	4.7 (11)
	29.602	28.099	51.004	58.549	ı	51.601	5.0 (11)
	39.009	35,999	690.09	62.569	111.99	54.412	5.7 (11)
	38.599	37.522	65.299	66.352	ı	58.005	5.8 (11)
	19.408	18.019	30.099	20.802	95.02	27.292	8.6 (11)
	20.312	19.141	36.007	22.999	ı	28.379	9.6 (11)
	22.141	20.539	37.499	114.59	110.011	31.002	1.0 (12)
-	22.011	20.599	38.104	110.59	115.59	ı	1.02 (12)
371.6	22.699	21.211	38.019	120.00	ı	32,001	1.05 (12)
	20.001	21.069	39.999	130.09	119.99	32.072	1.07 (12)
	23.329	22.001	39.339	155.00	120.29	30.001	1.2 (12)
371.5	23.002	22.012	40.039	235.49	144.99	33.901	3.9 (12)
	23.292	21.912	42.559	240.04	133.19	34.901	7.5 (12)
_	23.222	21.902	46.499	253.79	180.06	37.003	1.4 (13)
	20.399	21.399	53.799	342.99	102.04	49.434	2.7 (13)
	22.008	21.101	63.499	300.03	100.04	59.019	4.4 (13)
371.5	22.599 22.619	21.302	72.999 80.039	280.89	105.29	72.212 76.429	5.8 6.6 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0
371.5	767.77	71.404	83.88	1 /30.49	4 100.49	80.00	(61) 6-7-1

(1) Pre Test at Ambient Temperature (2) Pre Test at 100 F

Forward Voltage Drop (VDC)

-94

TABLE 3-60 RUN 1, FORWARD VOLTAGE CHARACTERISTICS (100°F) GE-91

Neutron	Exposure	(n/cm ²)	(1)		(2)	3.4 (9)	3.8 (10)	5.9 (10)	\sim	1.1(11)	1.3(11)	1.5(11)	1.7 (11)	2.1 (11)	2.3 (11)	3.0 (11)	3.2 (11)	4.1 (11)	4.6 (11)	5.2 (11)	5.8 (11)	7.2 (11)	4.4 (13)
		*	0 702	70.00	0.691	0.657	0.689	0.645	0.644	0.635	0.635	0,660	0.650	0.664	0.655	0.650	0.661	0.656	0.686	699.0	0.671	0.685	1.441
	d Diodes	3	0 693		0.080	0.644	0,681	0.633	0.636	0.630	0.628	0.654	0.644	0.659	0.654	0.642	0.659	0.650	0.679	0.664	0.665	0.680	1,281
Forward Voltage Drop (VDC)	Irradiated	2	0 703		0.692	0,060	0.686	0.631	0.639	0,632	0.630	0.653	0.644	0.659	0.653	0.649	0.663	0.656	0.687	0.674	0.679	0.700	1.599
Forward Volta		_	0.707		0.694	0.663	0.687	0.639	0.640	0.631	0.630	0.650	0.643	0.656	0.650	0.644	0.652	0.650	0.681	0.665	0.672	0.690	1.493
	l Diodes	9	0.729		0.711	069.0	0.710	0.690	0.693	0.695	0.693	0.690	0.691	0.704	0.691	0.693	969.0	0.691	0.702	0.704	0.702	0.705	0.702
	Control Di	5	0.725	705	cu/.u	089.0	0.705	0.685	989.0	0.685	0.685	0.691	0.690	0.700	0.693	0.686	0.692	0.680	0.700	0.699	0.679	0.700	0.697
Forward	Current	(Amps)	0.248	000	0.220	0.144	0.139	0.141	0.145	0.139	0.136	0.156	0.165	0.209	0.198	0.201	0.232	0.148	0.183	0.191	0.193	0.208	9/1.0

(1) Pre Test at Ambient Temperature (2) Pre Test at 100°F

TABLE 3-61 RUN 2, FORWARD VOLTAGE CHARACTERISTICS (100°F) GE-91

Neutron	Exposure	(n/cm ²)	(1)	(2)	4.6 (9)	3.0 (10)	_	7.2 (10)	1.1 (11)	1.4 (11)	1.6 (11)	2.0 (11)	2.9 (11)	3.2 (11)	3.9 (11)	ت, و	5.8 (11)	5.0 (12)	2.2 (13)		3.7 (13)	4			
		4*	0.790	0.780	0.777	0.791	0.777	0.780	0.781	0.779	0.795	0.784	0.784	0.775	0.799	0.821	0.825	0.913	1.430	1.730	2.040	2.319			
	rradiated Diodes	3	0.785	0.780	0.771	0.789	0.775	0.779	0.780	0.780	0.794	0.783	0.783	0.778	0.796	0.822	0.820	0.899	1.311	1.540	1.791	2.022			
Forward Voltage Drop (VDC)	Irradiated	2	0.788	0.782	0.774	0.789	0.775	0.778	0.771	0.780	0,795	0.784	0.790	0.785	0.810	0.840	0.820	0.975	1,656	2.010	2.396	2.723			
Forward Volta		1	0,675	0.673	ı	ı	ı	ı	1	ı	1	1	I	1	ı	ı	-	1	ı	1	1	ı			
	1 Diodes	9	0.798	0.787	0.780	0.792	0.784	0.784	0.784	0.785	0.792	0.783	0.778	0.771	0.780	0.793	0.784	0.781	0.786	0,781	0.730	0.787			
	Control D	5	0.801	0.790	0.785	0.793	0.788	0.787	0.787	0.788	0.7%	0.786	0.781	0.771	0.786	0.791	0.788	0.784	0.790	0.784	0.781	0.790			
Forward	Current	(Amps)	1.205	1.197	060.1	1.127	1.143	1.113	1.115	1.142	1.130	1.110	1.162	1.136	1,153	1.132	1.168	1.120	1.134	1.096	1.082	1.178			

(1) Pre Test at Ambient Temperature
(2) Pre Test at 100 F

Control Diodes
9
0.805
0.831
0.822
0.830
0.820
0.830
0.830
0.825
0.818
0.815
0.830
0.829
0.826
0.825
0.826
0.827
0.826
0.828
0.826
0.830

(1) Pre Test at Ambient Temperature (2) Pre Test at 100°F

Exposure (n/cm^2) 1.1 (9) 1.7 (11) 4.0 (11) 5.2 (11) 8.8 (11) Neutron 0.825 1.222 0.898 0.970 TABLE 3-63 RUN 3, FORWARD VOLTAGE CHARACTERISTICS (160°F) GE-91 9 0.810 0.826 1.228 0.910 0.990 Irradiated Diodes Forward Voltage Drop (VDC) 0.889 1.080 1.533 1.159 ∞ 0.719 0.793 0.838 0.791 0.794 Control Diodes 0.778 0.790 0.811 0.797 0.793 Forward Current 2.571 2.607 2.614 2.605 2.629 (Amps)

TABLE 3-64 RUN 4, REVERSE LEAKAGE CHARACTERISTICS (100°F) GE-91

Reverse			Reverse Laakage (µA)	ikage (µA)			Neutron
Voltage	Control Dio	of Diodes		Irradiate	Irradiated Diodes		Exposure
(VDC)	5	9		2	3	4	(n/cm ²)
243.5	0.081	0.405	0.601	0.511	0.672	0.922	(2)
243.8	1.252	0.572	0.704	1.252	1.312	1,259	(2)
244.0	1.304	0.622	1.012	1.271	1.272	1.441	1.1 (10)
243.9	1.172	0.542	1.012	1.142	1,107	1,278	. –
244.0	1.322	0.449	1.122	1.301	1.302	1.48]	3 .
243.8	1.222	0.542	1.211	1.501	1.521	1.519	1.2(11)
244.0	1.301	0.532	1.342	1,621	1.541	1.519	1.5(11)
243.9	1.00.1	0.489	1.332	1.401	1.342	1,433	1.7 (11)
243.9	1.188	0.507	1.482	1.849	1.742	1.798	1.8 (11)
244.0	1.351	0.599	1.572	2.001	1.872	2,011	2.2 (11)
243.4	1.008	0.529	1.582	1.922	1.722	1.877	2.7 (11)
243.8	1.632	0.701	2.121	2.652	2.001	2,511	2.9 (11)
243.8	1.311	0.612	2.262	2.652	2.241	2,332	3.4 (11)
243.8	1.182	0.522	2.312	2.602	2.222	2.273	4.5(11)
243.8	1.217	0.502	2.405	2.832	2.341	2,342	5.3 (11)
243.8	1.301	0.561	2.641	3,201	2.569	2.639	
243.8	1.452	0.612	2.962	3,501	2.852	2.919	6.8 (11)
243.7	1.442	109.0	4.102	4,912	3.862	3.982	5.6 (12)
243.7	1.332	0.449	20.039	31.319	19.742	20.004	

(1) Pre Test at Ambient Temperature(2) Pre Test at 100°F

TABLE 3-65 RUN 5, REVERSE LEAKAGE CHARACTERISTICS (100°F) GE-91

Reverse			Reverse Leakage (µA)	age (µA)			Neutron
Voltage	Control	Control Diodes		Irradiated	d Diodes		Exposure
(vpc)	5	9		2	3	4	(n/cm ²)
401.9	1.901	0.971	0.921	1.412	1.901	1.911	(1)
401.8	1.942	0.999	1.211	1.332	1.712	1.898	(2)
401.9	1.841	0.991	1.475	1.711	2.032	1.701	9.4 (8)
402.1	1.843	0.947	1.642	1.801	2,292	1.872	1.3 (10)
402.0	1.902	0.942	1,752	1.922	2.332	1.801	Э
401.9	1.907	0.942	1.722	1.932	2.272	1.922	8.4 (10)
401.9	1.902	0.949	1.801	2.006	2.413	1.932	1.1 (11)
402.0	2.042	0.966	1.729	2,145	2.682	2.082	1.4 (11)
402.0	2.032	0.949	1.811	2,222	2.801	2.139	1.5 (11)
401.8	1,952	0.905	2.052	2.325	2,711	2.202	1.7 (11)
402.0	2.201	1.051	2.102	2.522	3.142	2.492	2.1 (11)
402.1	2,301	1.142	2.442	3,152	3.912	2.972	2.4 (11)
402.1	2.401	1.152	2,762	3.141	3.762	2.892	2.5 (11)
401.8	2.201	1.122	2.781	3,152	3.601	2.872	3.1 (11)
401.8	1.956	0.956	2.996	3.541	3.942	3.078	3.8 (11)
401.9	2.001	0.908	3,382	3.649	4.001	3.072	5.3 (11)
401.8	2.142	1.002	3,532	4.222	4.622	3.418	6.0 (11)
401.8	2.011	0.971	3.912	4.669	4.752	3,721	
401.8	1.992	0.947	5,749	6.583	6.104	5.231	6.0 (12)
402.0	ı	ı	30°05	30.06	26.00	25.05	4.4 (13)
						-	

(1) Pre Test at Ambient Temperature
 (2) Pre Test at 100 F

TABLE 3-66 RUN 6, REVERSE LEAKAGE CHARACTERISTICS (100^oF) GE-91

Reverse			Reverse Leakage (µA)	kage (µA)			Neutron
Voltage	Contro	Control Diodes		Irradiated	d Diodes		Exposure
(VDC)	5	9		2*	3	4	(n/cm ²)
567.3	2.372	1.135	1.222	1.079	4 602	2 102	(1)
567.3	2.812	1,419	1 542	1 052	5 101	702 6) (S
567.4	2.802	1.372	2.042	2.328	5.007	2.702	(7)
567.4	2.831	1.375	2.082	2.522	5.749	2.542	
567.3	2.741	1.301	2.512	2.671	6.50]	2.672	1 2 (11)
567.4	3.242	1.549	2.862	3.252	10.002	3.042	1.9(11)
567.3	3.802	1.852	4.392	4.618	14.058	4.242	2.9 (11)
567.3	4.142	1.732	4.741	5.179	13.002	4.642	3.3(11)
567.4	2.902	1.381	5.129	4.701	17.099	4.022	5.5(11)
567.3	3.101	1.441	5.912	5.279	12,999	4.422	· ~
567.3	3.042	1.422	7.202	6.502	12.001	5.228	ト
567.3	2.905	1.432	9.102	8.481	12.239	6.832	
567.4	3.273	1.502	10.079	9.602	12.372	7,731	8.6 (12)
567.3	3.372	1.462	14.601	14.472	16.008	11.702	<i>-</i> :_
567.3	2.912	1.201	16.212	15.722	18.099	13.052	2.0 (13)
567.3	ı	1.389	26.292	26.409	24.108	20,319	\sim
567.3	3.182	1.412	32.899	34.102	ı	25, 539	
567.3	3.212	1.372	41.029	41.362	36.007	29,802	3 2 (13)
567.3	3.242	1.442	48.079	42.990	39.999	30,099	- C
567.3	3.242	1.398	50.049	58.439	44.999	40.005	3.9 (13)
							
				,			

(1) Pre Test at Ambient Temperature(2) Pre Test at 100° F

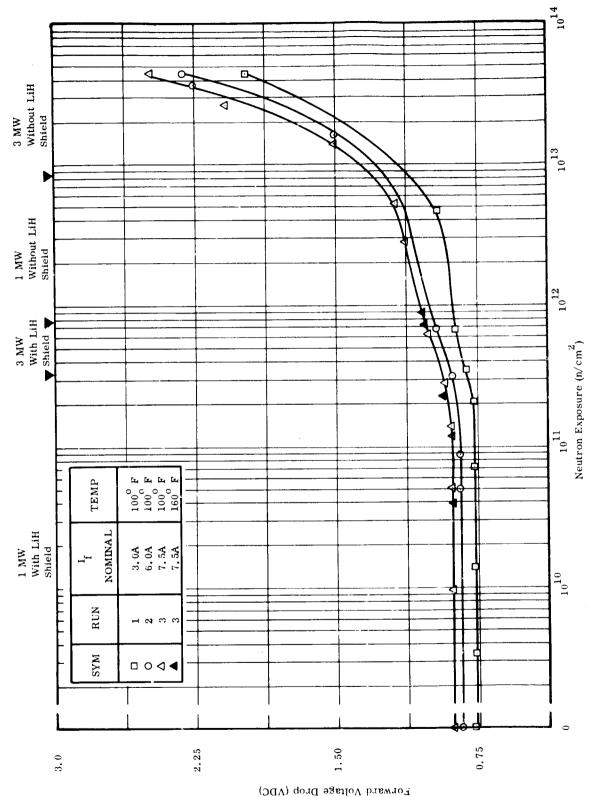


FIGURE 3-25 FORWARD VOLTAGE DROP VERSUS NEUTRON EXPOSURE, GE-92 (TYPICAL)

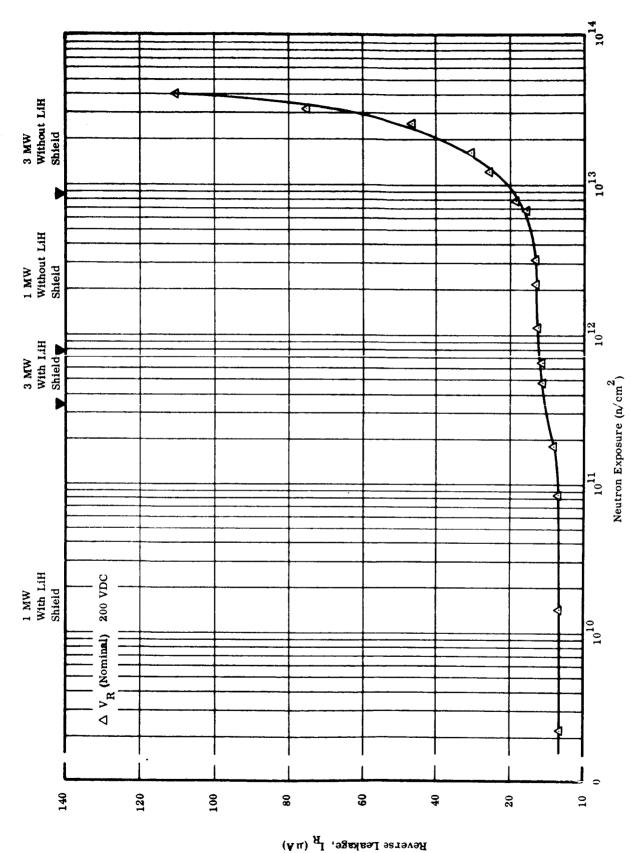


FIGURE 3-26 REVERSE LEAKAGE VERSUS NEUTRON EXPCSURE, GE-92 (TYPICAL), 100° F

TABLE 3-67 RUN 1, FORWARD VOLTAGE CHARACTERISTICS (100°F) GE-92

Control Diodes 1* 2 3 5 6 1* 2 3 0.780 - 0.770 0.756 0 0.780 - 0.774 0.774 0.756 0 0.780 - 0.772 0.760 0.764 0 0.770 - 0.772 0.769 0.764 0 0.770 - 0.772 0.769 0.764 0 0.770 - 0.772 0.765 0.764 0 0.771 - 0.773 0.765 0.764 0 0.771 - 0.774 0.765 0.764 0 0.771 - 0.774 0.765 0.764 0 0.772 0.774 0.765 0.764 0 0 0.776 0.778 0.765 0.764 0 0 0 0 0.776 0.770 0.779 0.760 0.754 0 0	Control Di 5 780 780 770 777 777 773 766 776 777 773	0.770 0.774 0.772 0.772 0.775 0.775 0.775 0.776 0.778 0.778	0.770 0.774 0.774 0.769 0.763 0.765 0.765 0.760 0.760 0.760 0.760	3 0.756 0.760 0.764 0.760 0.756 0.758 0.758 0.758	0.773 0.784 0.782 0.767 0.770 0.770 0.778	Exposure (n/cm ²) (1) (2) (3.4 (9) 6.6 (9) 4.8 (10) 7.1 (10) 1.0 (11)
5 6 11* 2 3 780 - 0.770 0.774 0.756 780 - 0.774 0.756 0.756 770 - 0.772 0.756 0.756 770 - 0.773 0.756 0.756 776 - 0.775 0.765 0.766 777 - 0.774 0.765 0.764 777 - 0.774 0.765 0.764 774 0.774 0.765 0.754 0.754 774 0.774 0.760 0.754 0.754 775 0.774 0.760 0.754 0.754 774 0.754 0.750 0.756 0.756 775 0.752 0.784 0.757 0.776 774 0.760 0.784 0.772 0.772 775 0.765 0.803 0.780 0.786 774 0.760 0.862 0.806 <	5 780 780 773 777 773 773 773 774 775	0.770 0.774 0.772 0.772 0.775 0.775 0.775 0.776 0.778 0.784	2 0.770 0.774 0.770 0.769 0.763 0.765 0.760 0.760 0.760	3 0.756 0.760 0.764 0.756 0.756 0.758 0.758	0.773 0.784 0.782 0.767 0.770 0.770 0.778	(1) (2) (2) (3.4 (9) 6.6 (9) 4.8 (10) 7.1 (10) 1.0 (11)
780 - 0.770 0.774 0.756 780 - 0.774 0.774 0.760 778 - 0.772 0.770 0.764 770 - 0.770 0.769 0.765 774 - 0.775 0.765 775 - 0.775 0.765 777 - 0.775 0.765 777 - 0.776 0.766 778 0.751 0.776 0.759 779 0.752 0.784 0.759 770 0.751 0.784 0.750 770 0.760 0.778 0.755 771 0.760 0.778 0.756 772 0.776 0.787 0.756 773 0.760 0.787 0.756 774 0.765 0.883 0.770 775 0.765 0.883 0.790 776 0.765 0.885 777 0.760 0.765 0.885 778 0.760 0.760 0.766 779 0.765 0.885 770 0.760 0.760 0.766 771 0.760 0.760 0.766	780 780 778 777 777 773 775 773	0.770 0.774 0.772 0.770 0.775 0.775 0.778 0.784	0.770 0.774 0.770 0.769 0.763 0.765 0.760 0.760 0.750	0.756 0.760 0.764 0.760 0.756 0.758 0.758	0.773 0.784 0.782 0.771 0.770 0.770	
780 - 0.774 0.705 0.706 0.707 0.707 0.707 0.708	777 777 777 777 777 777 777 777 777 77	0.774 0.772 0.772 0.772 0.775 0.775 0.778 0.784	0.774 0.770 0.769 0.765 0.765 0.760 0.760 0.750	0.750 0.760 0.760 0.756 0.758 0.758	0.784 0.782 0.771 0.770 0.770 0.770	0000
780 - 0.774 0.774 0.760 778 - 0.772 0.770 0.764 770 - 0.770 0.769 0.765 774 - 0.769 0.769 775 - 0.768 0.765 0.769 777 - 0.774 0.765 0.769 777 - 0.775 0.774 0.769 778 0.775 0.776 0.759 779 0.751 0.784 0.759 770 0.761 0.803 0.775 770 0.762 0.803 0.775 771 0.760 0.862 0.818 772 0.765 0.825 773 0.765 0.865 774 0.765 0.865 775 0.765 0.865 776 0.765 0.865 777 0.766 0.865 778 0.767 0.769 779 0.765 0.865 770 0.765 0.865 770 0.766 0.865 771 0.760 0.860 772 0.760 0.865 773 0.760 0.865 774 0.765 0.865 775 0.765 0.865 776 0.765 0.865 777 0.760 0.865 778 0.765 0.865 779 0.765 0.865 770 0.765 0.865 770 0.766 0.865 770 0.766 0.865 770 0.766 0.865 770 0.766 0.865 770 0.766 0.865 770 0.766 0.865	780 770 777 777 777 778 779 779	0.774 0.772 0.772 0.772 0.774 0.778 0.788 0.784	0.774 0.770 0.769 0.765 0.765 0.760 0.760 0.759	0.760 0.764 0.760 0.760 0.764 0.758	0.784 0.767 0.771 0.770 0.770 0.778	
778 - 0.772 0.770 0.764 770 - 0.770 0.769 776 - 0.770 0.769 0.760 777 - 0.772 0.765 0.760 777 - 0.774 0.765 0.764 777 - 0.775 0.765 0.764 778 0.776 0.776 0.759 0.759 779 0.751 0.784 0.750 0.756 779 0.762 0.803 0.770 0.776 770 0.761 0.816 0.816 0.805 802 0.787 0.820 0.788 803 0.760 0.789 804 0.765 0.883 0.790 0.785 805 0.760 0.862 0.818 0.865 807 0.760 0.860 0.864 0.855 778 0.760 0.860 0.864 0.855 779 0.760 0.860 0.864 0.855 779 0.760 0.860 0.864 0.855 777 0.760 0.860 0.864 0.865	778 776 777 777 778 779 770 770 770	0.772 0.770 0.772 0.772 0.774 0.778 0.784 0.784	0.770 0.769 0.763 0.765 0.760 0.760 0.759	0.764 0.760 0.756 0.764 0.758 0.759	0.782 0.767 0.771 0.780 0.778	
770 0.770 0.769 0.756 776 - 0.772 0.765 0.756 777 - 0.775 0.765 0.764 777 - 0.774 0.760 0.758 777 - 0.776 0.759 0.759 773 0.760 0.757 0.754 0.754 760 0.751 0.784 0.757 0.755 774 0.762 0.784 0.757 0.756 775 0.761 0.816 0.757 0.756 775 0.762 0.816 0.772 0.776 802 0.763 0.789 0.772 0.776 779 0.765 0.802 0.780 0.786 771 0.760 0.862 0.818 0.786 773 0.760 0.860 0.800 0.786 773 0.760 0.860 0.864 0.855 773 0.760 0.760 0.864 0.865 773 0.760 0.760 0.860 0.866 <	770 775 777 773 775 775 777 779	0.770 0.768 0.772 0.775 0.776 0.778 0.784 0.784	0.769 0.763 0.765 0.765 0.760 0.750 0.750	0.760 0.756 0.760 0.764 0.758 0.759	0.767 0.771 0.780 0.770 0.778	
776 - 0.768 0.756 777 - 0.772 0.765 0.760 777 - 0.774 0.765 0.764 777 - 0.774 0.760 0.758 773 0.760 0.759 0.754 774 0.760 0.754 0.755 775 0.761 0.784 0.757 0.755 776 0.762 0.803 0.772 0.756 777 0.761 0.816 0.772 0.776 779 0.765 0.862 0.789 0.786 770 0.760 0.862 0.818 0.806 771 0.760 0.860 0.860 0.796 773 0.760 0.860 0.864 0.785 773 0.760 0.960 0.864 0.855 774 0.764 1.971 1.636 1.700	776 777 777 773 776 776 777	0.768 0.772 0.775 0.775 0.778 0.784 0.784	0.763 0.765 0.765 0.760 0.759 0.759	0.756 0.760 0.764 0.758 0.759	0.771 0.700 0.780 0.770	7.1 (10)
776 - 0.772 0.765 0.764 777 - 0.774 0.765 0.764 777 - 0.774 0.760 0.758 773 0.760 0.778 0.759 0.754 773 0.751 0.784 0.759 0.754 76 0.752 0.784 0.757 0.756 76 0.762 0.803 0.772 0.770 77 0.761 0.816 0.780 0.776 779 0.765 0.833 0.792 0.785 770 0.760 0.860 0.806 0.785 771 0.760 0.860 0.800 0.796 773 0.760 0.960 0.864 0.785 778 0.764 1.971 1.636 1.700	776 777 778 778 778 779	0.772 0.775 0.774 0.778 0.784 0.784	0.765 0.765 0.760 0.760 0.759 0.757	0.760 0.764 0.758 0.759	0.780	7.1 (10)
777 - 0.775 0.765 0.764 777 - 0.774 0.760 0.758 776 - 0.776 0.759 0.759 773 0.760 0.778 0.759 0.754 764 0.751 0.784 0.757 0.755 776 0.762 0.803 0.772 0.776 777 0.761 0.816 0.780 0.776 779 0.765 0.832 0.792 0.789 802 0.787 0.786 0.862 0.818 0.786 771 0.760 0.862 0.818 0.796 0.796 773 0.760 0.860 0.800 0.796 0.796 773 0.764 1.971 1.636 1.700	777 777 773 773 775 772	0.775 0.774 0.776 0.778 0.784 0.784	0.765 0.760 0.760 0.759 0.760	0.764 0.758 0.759	0.780	1.0(11)
777 - 0.774 0.760 0.758 776 - 0.776 0.759 0.759 773 0.760 0.778 0.759 0.754 769 0.751 0.784 0.757 0.757 760 0.762 0.803 0.772 0.776 772 0.761 0.816 0.780 0.776 773 0.765 0.832 0.792 0.789 774 0.765 0.862 0.818 0.786 771 0.765 0.862 0.818 0.796 0.785 771 0.760 0.860 0.800 0.796 0.796 773 0.760 0.960 0.864 0.855 778 0.764 1.971 1.636 1.700	777 773 769 776 772	0.774 0.776 0.778 0.784 0.784	0.760 0.760 0.759 0.760 0.757	0.758	0.770	1 1 (11)
776 - 0.776 0.759 0.754 773 0.760 0.778 0.759 0.754 769 0.751 0.784 0.757 0.757 760 0.762 0.803 0.772 0.776 772 0.761 0.816 0.780 0.776 779 0.765 0.816 0.789 0.789 802 0.787 0.789 0.806 0.789 771 0.760 0.860 0.818 0.806 0.796 773 0.760 0.960 0.864 0.785 778 0.764 1.971 1.636 1.700	776 773 766 772 772	0.776 0.778 0.784 0.784 0.803	0.760 0.759 0.760 0.757	0.759	0.778	ここす:-
773 0.760 0.778 0.754 769 0.751 0.784 0.760 0.757 766 0.752 0.784 0.757 0.756 776 0.762 0.803 0.772 0.776 777 0.761 0.816 0.780 0.776 779 0.765 0.832 0.792 0.789 802 0.787 0.862 0.818 0.806 774 0.760 0.860 0.790 0.785 771 0.760 0.960 0.864 0.785 773 0.764 1.971 1.636 1.700	773 769 776 772	0.778 0.784 0.784 0.803	0.759 0.760 0.757	0.754	1	1.7(11)
769 0.751 0.784 0.760 0.757 766 0.752 0.784 0.757 0.756 775 0.762 0.803 0.772 0.770 775 0.761 0.816 0.780 0.776 779 0.765 0.832 0.792 0.789 802 0.787 0.862 0.818 0.806 779 0.765 0.833 0.790 0.785 771 0.760 0.860 0.800 0.796 773 0.760 0.960 0.864 0.855 778 0.764 1.971 1.636 1.700	769 766 772 779	0.784 0.784 0.803	0.760		0.775	2.1 (11)
766 0.752 0.784 0.757 0.756 776 0.762 0.803 0.772 0.770 772 0.761 0.816 0.780 0.776 779 0.765 0.832 0.792 0.789 802 0.787 0.862 0.818 0.806 766 0.765 0.860 0.790 0.785 771 0.760 0.960 0.864 0.796 773 0.764 1.971 1.636 1.700	766 776 772 779	0.784	0.757	0.757	0.772	2.6 (11)
776 0.762 0.803 0.772 0.770 772 0.761 0.816 0.780 0.776 779 0.765 0.832 0.792 0.789 802 0.787 0.862 0.818 0.806 766 0.765 0.833 0.790 0.785 771 0.760 0.860 0.800 0.796 773 0.760 0.960 0.864 0.855 778 0.764 1.971 1.636 1.700	776 772 779	0.803		0.756	0.775	3.0 (11)
772 0.761 0.816 0.776 779 0.765 0.832 0.792 0.789 802 0.787 0.862 0.818 0.806 766 0.765 0.833 0.790 0.785 771 0.760 0.860 0.800 0.796 773 0.764 1.971 1.636 1.700	772		0.772	0.770	0.790	3.5 (11)
779 0.765 0.832 0.789 802 0.787 0.862 0.818 0.806 766 0.765 0.833 0.790 0.785 771 0.760 0.860 0.800 0.796 773 0.764 0.960 0.864 0.855 778 0.764 1.971 1.636 1.700	//	0.816	0.780	0.776	0.797	4.1 (11)
802 0.787 0.862 0.818 0.806 766 0.765 0.833 0.790 0.785 771 0.760 0.960 0.864 0.855 778 0.764 1.971 1.636 1.700		0.832	0.792	0.789	0.809	9
766 0.765 0.833 0.790 0.785 771 0.760 0.860 0.800 0.796 773 0.760 0.960 0.864 0.855 778 0.764 1.971 1.636 1.700	802	0.862	0.818	908.0	0.826	5.1 (11)
771 0.760 0.860 0.800 0.796 773 0.760 0.960 0.864 0.855 778 0.764 1.971 1.636 1.700	992	0.833	0.790	0.785	908.0	2
773 0.760 0.960 0.864 0.855 778 0.764 1.971 1.636 1.700	771	0,860	0.800	0.796	0.820	7
778 0.764 1.971 1.636 1.	773	096.0	0.864	•	0.884	4.7 (12)
	778 0.	1.971	1.636	1.700	1.807	4.4 (13)

(1) Pre Test at Ambient Temperature(2) Pre Test at 100 F

Neutron	Exposure	4 (n/cm ²)		0.826 (1)				(1) (2) (4. 4. 6) (8. 7)	(1) (2) (4.6) (8.7) (1.2)	(E) 4.4.6 (E) 8.7.1.2.1.2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	(1) (2) (4, 4, 6, 6, 6, 7, 7, 1, 1, 2, 7, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	(1) (2) (4. 4. 4. 9. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	(1) (2) (4, 4, 5) (7) (8, 7, 6) (9, 1, 1, 2) (1, 2, 2) ((E) 4.4.6.2) 4.7.1.2.2.2.2.2.2.3.2.6.0	(E) 4.4 4.5 (E) 4.5 (E) 4.5 (E) 4.5 (E) 5.5 (E	(E) 4.4.8.1.1.2.2.2.8.8.9.9.0.9.0.9.9.9.9.9.9.9.9.9.9.9.9.9	(C) 4 4 8 1 1 2 2 2 8 8 4 7 2 3 2 8 8 7 2 3 2 8 8 8 4 8 9 7 8 9 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9	(5) 4. 4. 8. 7. 7. 2. 3. 2. 5. 2. 3. 3. 2. 5. 2. 3. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	(E) 4.4 4.9 (E) 4.9 (E) 4.9 (E) 7.1 (E) 7.2 (E) 7.2 (E) 7.2 (E) 7.3 (E	(E) 4.4 4.5 (E) 4.9 (E) 4.9 (E) 7.2 (E	(E) 4.4 8.7 1.2 2.2 2.5 4.4 9.7 2.2 2.5 2.7 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	(E) 4.4 4.5 (E) 7.2 (E) 7.2 (E) 7.3 (E) 7.4 (E) 7.5 (E	(E) 4.4 8.7	(E) 4.4.8.1.2.2.2.8.8.4.9.9.0.7.7.2.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9	(E) 4.4.8.1.1.2.2.2.8.8.4.9.9.0.7.2.2.9.8.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9	(E) 4.4.8.1.2.2.2.8.8.4.9.0.7.7.9.0.8.8.9.0.9.0.8.9.9.0.9.9.9.0.9.9.9.9	(E) 4.4.8.1.1.2.2.2.8.8.4.9.9.0.2.2.2.9.8.9.9.0.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9	(E) 4.4.8.1.1.2.2.2.2.2.2.4.4.9.5.2.2.2.2.2.2.4.4.9.5.2.2.2.2.2.2.4.4.9.5.2.2.2.2.2.4.4.9.5.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9
	ed Diodes	3	1111	0.809	0.820		-	<u> </u>																				
Forward Voltage Drop (VDC)	Irradiated	2		0.833	0.833	0.833 0.837 0.839	0.833 0.837 0.839 0.834	0.833 0.837 0.839 0.834 0.834	0.833 0.837 0.839 0.834 0.834	0.833 0.837 0.839 0.834 0.834	0.833 0.837 0.834 0.834 0.835 0.835	0.833 0.837 0.834 0.834 0.835 0.835	0.833 0.834 0.834 0.834 0.835 0.835 0.835	0.833 0.834 0.834 0.834 0.835 0.835 0.835	0.833 0.834 0.834 0.834 0.835 0.835 0.835 0.835	0.833 0.837 0.834 0.834 0.835 0.835 0.835 0.835 0.835	0.833 0.837 0.834 0.834 0.835 0.835 0.835 0.835 0.854 0.854	0.833 0.837 0.834 0.834 0.835 0.835 0.835 0.835 0.835 0.854 0.875	0.833 0.837 0.834 0.834 0.835 0.835 0.835 0.840 0.875 0.875 0.875	0.833 0.837 0.837 0.834 0.835 0.835 0.835 0.835 0.840 0.875 0.875 1.231	0.833 0.837 0.837 0.834 0.834 0.835 0.835 0.835 0.854 0.875 0.875 1.231 1.231	0.833 0.837 0.834 0.834 0.835 0.835 0.835 0.835 0.854 0.875 0.875 0.875 1.231 1.580	0.833 0.837 0.834 0.834 0.835 0.835 0.835 0.840 0.875 0.875 0.875 0.875 1.231 1.231 1.580 1.580	0.833 0.837 0.837 0.834 0.834 0.835 0.835 0.835 0.835 0.875 0.875 0.875 1.231 1.231 1.780 1.882	0.833 0.837 0.834 0.834 0.834 0.835 0.835 0.835 0.835 0.854 0.875 0.875 0.875 1.231 1.231 1.580 1.882	0.833 0.837 0.834 0.834 0.835 0.835 0.835 0.875 0.875 0.875 0.875 1.231 1.280 1.780	0.833 0.837 0.834 0.834 0.834 0.835 0.835 0.835 0.835 0.854 0.875 0.875 0.875 0.875 1.231 1.280 1.580	0.833 0.837 0.837 0.834 0.834 0.835 0.835 0.875 0.875 0.875 1.231 1.231 1.780 1.882
Forward Volte		*		0.843	0.843	0.843 0.843 0.844	0.843 0.843 0.844 0.844	0.843 0.843 0.844 0.844 0.850	0.843 0.843 0.844 0.850 0.853	0.843 0.843 0.844 0.850 0.853	0.843 0.844 0.844 0.850 0.853 0.857	0.843 0.844 0.844 0.850 0.853 0.857 0.860	0.843 0.844 0.844 0.850 0.853 0.857 0.860 0.864	0.843 0.844 0.844 0.850 0.853 0.867 0.864 0.864	0.843 0.844 0.844 0.850 0.853 0.867 0.864 0.874 0.880	0.843 0.844 0.844 0.850 0.853 0.867 0.864 0.874 0.880 0.897	0.843 0.844 0.844 0.850 0.853 0.867 0.864 0.874 0.897 0.925	0.843 0.844 0.844 0.850 0.853 0.867 0.864 0.874 0.880 0.925 0.934	0.843 0.844 0.844 0.850 0.853 0.867 0.864 0.874 0.874 0.925 0.934 0.970	0.843 0.844 0.844 0.850 0.853 0.857 0.864 0.874 0.874 0.970 0.935 1.510	0.843 0.844 0.844 0.850 0.853 0.857 0.874 0.874 0.870 0.970 1.510 1.765	0.843 0.844 0.844 0.844 0.850 0.853 0.867 0.864 0.874 0.897 0.925 0.935 0.925 0.937 0.925 2.016	0.843 0.844 0.844 0.844 0.853 0.853 0.857 0.864 0.874 0.874 0.970 0.935 0.935 2.016 2.249	0.843 0.844 0.844 0.850 0.853 0.857 0.864 0.874 0.874 0.970 0.925 0.934 0.970 2.249	0.843 0.844 0.844 0.844 0.853 0.853 0.857 0.874 0.874 0.970 0.975 1.510 1.510 2.016 2.249	0.843 0.844 0.844 0.844 0.850 0.853 0.857 0.864 0.874 0.925 0.934 0.970 1.510 1.765 2.249 2.305	0.843 0.844 0.844 0.850 0.853 0.857 0.874 0.874 0.970 0.970 1.510 1.510 2.249 2.305	0.843 0.844 0.844 0.844 0.850 0.853 0.857 0.864 0.874 0.925 0.934 0.970 1.510 1.510 2.249 2.249
	ol Diodes	9		ı	1 1		1 1 1 1												0.810	0.810		0.810 0.810 0.815 0.815	0.810 0.810 0.815 0.815	0.810 0.810 0.815 0.815	0.810 0.810 0.815 0.815	0.810 0.810 0.815 0.816 0.816	0.810 0.810 0.815 0.815	0.810 0.810 0.815 0.815 0.815
	Control D	5		0.842	0.842	0.842 0.840 0.840	0.842 0.840 0.840 0.841	0.842 0.840 0.840 0.841	0.842 0.840 0.840 0.841 0.841	0.842 0.840 0.840 0.841 0.841 0.840	0.842 0.840 0.840 0.841 0.841 0.840 0.840	0.842 0.840 0.840 0.841 0.840 0.838	0.842 0.840 0.840 0.841 0.841 0.840 0.838 0.838	0.842 0.840 0.840 0.841 0.840 0.838 0.834 0.835	0.842 0.840 0.840 0.841 0.840 0.838 0.831 0.831	0.842 0.840 0.840 0.841 0.840 0.838 0.838 0.831 0.831	0.842 0.840 0.840 0.841 0.840 0.838 0.831 0.831 0.831	0.842 0.840 0.840 0.841 0.840 0.838 0.834 0.831 0.831 0.831	0.842 0.840 0.840 0.841 0.841 0.838 0.831 0.831 0.831 0.831 0.837	0.842 0.840 0.840 0.841 0.840 0.838 0.831 0.835 0.835 0.835 0.837 0.837	0.842 0.840 0.840 0.841 0.840 0.838 0.831 0.831 0.837 0.837 0.837 0.837	0.842 0.840 0.840 0.841 0.841 0.833 0.831 0.831 0.837 0.838 0.838 0.838 0.838	0.842 0.840 0.840 0.841 0.841 0.834 0.831 0.837 0.837 0.838 0.838 0.838 0.838 0.838	0.842 0.840 0.840 0.841 0.841 0.833 0.833 0.833 0.833 0.833 0.833 0.833 0.833 0.833	0.842 0.840 0.840 0.841 0.841 0.833 0.833 0.833 0.833 0.833 0.833 0.833 0.833 0.833	0.842 0.840 0.840 0.841 0.841 0.833 0.833 0.833 0.838 0.838 0.838 0.838 0.838	0.842 0.840 0.840 0.841 0.841 0.833 0.835 0.835 0.837 0.837 0.838 0.838 0.837 0.838	0.842 0.840 0.840 0.841 0.841 0.833 0.833 0.833 0.838 0.838 0.838 0.838 0.838 0.838
Forward	Current	(Amps)		6.405	6.405	6.405 6.396 6.404	6.405 6.396 6.404 6.368	6.405 6.396 6.404 6.368 6.376	6.405 6.396 6.404 6.368 6.376	6.405 6.396 6.404 6.368 6.376 6.504	6.405 6.396 6.404 6.368 6.376 6.504 6.511	6.405 6.396 6.368 6.368 6.376 6.511 6.371	6.405 6.396 6.404 6.368 6.376 6.504 6.511 6.250	6.405 6.396 6.396 6.368 6.368 6.504 6.511 6.271 6.250 6.247	6.405 6.396 6.368 6.368 6.376 6.511 6.211 6.216 6.216	6.405 6.396 6.368 6.368 6.376 6.511 6.250 6.247 6.216 6.251	6.405 6.396 6.396 6.368 6.376 6.504 6.511 6.250 6.216 6.216 6.251	6.405 6.396 6.396 6.404 6.368 6.376 6.511 6.250 6.250 6.216 6.251 6.251	6.405 6.396 6.404 6.368 6.376 6.511 6.210 6.250 6.216 6.216 6.216 6.216 6.216	6.405 6.396 6.308 6.368 6.376 6.250 6.247 6.216 6.216 6.216 6.216 6.216	6.405 6.396 6.368 6.368 6.376 6.511 6.250 6.247 6.216 6.216 6.216 6.216 6.216	6.405 6.3%6 6.3%8 6.368 6.368 6.376 6.511 6.250 6.216 6.216 6.216 6.219 6.219 6.219 6.219	6.405 6.396 6.368 6.368 6.376 6.511 6.250 6.247 6.216 6.216 6.216 6.219 6.219 6.219 6.219	6.405 6.396 6.368 6.368 6.376 6.250 6.247 6.216 6.216 6.216 6.219 6.219 6.219 6.219 6.228	6.405 6.396 6.368 6.368 6.376 6.511 6.216 6.216 6.216 6.216 6.216 6.219 6.219 6.219 6.219 6.219	6.405 6.396 6.308 6.368 6.376 6.511 6.216 6.216 6.216 6.216 6.219 6.219 6.219 6.219	6.405 6.396 6.368 6.368 6.376 6.511 6.216 6.216 6.216 6.216 6.216 6.216 6.216 6.217 6.219 6.219 6.219	6.405 6.396 6.398 6.368 6.376 6.511 6.216 6.216 6.216 6.216 6.219 6.219 6.219 6.219 6.219

(1) Pre Test at Ambient Temperature (2) Pre Test at 100° F

TABLE 3-69 RUN 3, FORWARD VOLTAGE CHARACTERISTICS (100°F) GE-92

Neutron	Exposure	(n/cm ²)	(5)	(2)	(6) 9 6	5.1 (10)	_	\sim	<i>-</i>	\mathcal{I}	2.8 (11)		$\overline{}$	6.1 (11)	仁	/ C				.7	3.4 (13)	4.4 (13)	
		4	0.850	0 863	0.865	0.865	0.866	0.864	0.871	0.872	0.874	0.890	0.909	0.930	0.999	1.040	1.095	1.252	1,425	1.695	1,965	2.219	
	d Diodes	3	0.834	0.847	0.848	0.850	0.849	0.844	0.850	0.854	0.854	0.870	0.880	0.905	0.969	1.006	1.057	1.194	1.346	1.576	1.820	2.053	
ge Drop (VDC)	Irradiated	2	0.864	0.869	0.870	0.870	0.870	0.864	0.870	0.874	0.876	0.895	0.910	0.932	0.999	1.035	1.085	1.233	1.382	1.611	1.826	2.000	
Forward Voltage		*	0.875	0.880	0.883	0.889	0.889	0.890	0.900	0.910	0.918	0.934	0.970	1.005	1.114	1.170	1.256	1.495	1.718	2.070	2.342	2.476	
	l Diodes	9	ı	1	ŀ	1	1	1	0.830	0.835	0.831	0.840	0.841	0.840	0.841	0.841	0.840	0.841	0.840	0.840		0.840	
	Contro	5	0.870	0.870	0.874	0.870	0.870	0.865	0,860	0.866	0.861	0.870	0.868	0,860	0.852	0.869	0.859	0.855	0.862	0.870	0.870	0.868	
Forward	Current	(Amps)	8.188	8.345	8.520	8.540	8.404	8.022	7.854	8.055	7.925	8.231	7.990	7.982	8.160	8.097	8.080	8.090	8.008	8.098	8.069	7.782	

(1) Pre Test at Ambient Temperature
(2) Pre Test at 100°F

TABLE 3-70 RUN 3, FORWARD VOLTAGE CHARACTERISTICS (160°F) GE-92

		T		
Neutron	Exposure	(n/cm ²)	(1) 3.9 (10) 1.2 (11) 2.3 (11) 3.2 (11) 7.2 (11) 3.3 (11)	
		10	0.837 0.803 0.849 0.826 0.898 0.874	
	l Diodes	6	0.845 0.814 0.814 0.862 0.920 0.900	
Forward Voltage Drop (VDC)	Irradiated Diodes	8	0.878 0.850 0.846 0.878 0.961 0.944	
Forward Volta		7*	0.898 0.883 0.933 0.927 1.030	
	Control Diodes	12	0.851 0.823 0.820 0.848 0.855 0.814	
	Contro	11	0.857 0.831 0.824 0.855 0.860 0.828	
Forward	Current	(Amps)	8.407 8.592 8.257 8.210 8.570 8.440	

(1) Pre Test at Ambient Temperature

TABLE 3-71 RUN 4, REVERSE LEAKAGE CHARACTERISTICS (100°F) GE-92

Reverse			Reverse Leakage (µA)	skage (μΑ)	10 10 10 10 10		Neutron
Voltage	Control	1 Diodes		Irradiated	d Diodes		Exposure
(VDC)	5	9		2	ဘ	4	(n/cm ²)
49.7	1.649	0.842	1.249	1 992	1 262	1 040	(6)
49.7	1.722	0.852	1,355	2,101	1.372	1 148	(2)
49.7	1.407	0.752	1.302	1.962	1.312	1 072	4 1 (10)
49.7	1.601	0.842	1.542	2.412	1.452	1.198	- C
49.7	1.691	0.832	1.612	2.501	1.532	1.248	4
49.7	1.682	0.842	1.741	7.682	1.612	1,301	1.1(11)
49.7	1.612	0.802	1.832	2.809	1.681	1.309	1.4(11)
49.7	1.401	0.701	1.651	2.502	1.542	1.201	1,7(11)
49.7	2.211	1.071	3.252	4.801	2.702	2.012	4
49.7	2.601	1.232	4.401	6.141	3.509	2.479	3.0 (11)
49.7	1.701	0.849	4.229	5.701	3.592	2.601	4.0(11)
49.7	1.662	0.782	4.311	5.001	3.376	2.301	, C 0
49.7	1.099	0.885	5.802	7.189	4.335	2.999	. C
49.7	1.851	0.872	6.832	8.008	4.853	3,207	6.9(11)
	1.832	0.882	10.812	13.642	7.099	5.012	10
, , , , , , , , , , , , , , , , , , ,	<u> </u>	659.0	N.	N.	66.109	44.169	4.4 (13)
000	1						

TABLE 3-72 RUN 5, REVERSE LEAKAGE CHARACTERISTICS (100°F) GE-92

Neutron	Exposure	(n/cm ²)	9,3 (8)	_	4.4 (10)	_	9.0 (10)	1.2 (11)	1.5(11)	_	_	3.0 (11)	4.8 (11)	6.0(11)	6.0 (12)	4.4 (13)
		4	1.741	1.893	1.801	1.902	2.042	2.072	2.272	2.532	3,308	4.071	3.632	4.572	7.799	43.99
	d Diodes	3	1,668	1.819	1.842	1.902	2.077	2.007	2.416	2.742	3.601	4.631	4.102	5.489	10.042	86.09
kage (µA)	Irradiated Diodes	2	2.342	2.511	2.641	2.832	3.059	3.272	3.749	4.331	5.962	7.542	6.502	8.902	18.001	240.19
Reverse Leakage (μA)			2.052	2.004	2.252	2.402	2.572	2.742	3.077	3.552	4.903	6.312	5.602	7.832	15.079	200.09
	1 Diodes	9	2.051	2.012	2.002	2.022	2.012	1.919	2.001	2.058	2.342	2.652	1.802	2.002	1,962	
	Control	5	2.399	2.452	2.312	2.356	2.372	2.369	2.401	2.419	3.202	3.601	2.313	2.582	2.519	
Reverse	Voltage	(VDC)	99.3	99.2	99.2	99.2	99.2	99.2	99.2	99.2	99.2	99.2	99.2	99.2	99.2	99.2

TABLE 3-73 RUN 6, REVERSE LEAKAGE CHARACTERISTICS (100°F) GE-92

Reverse			Reverse Leakage (µA)	akage (µA)			Neutron
Leakage	Control	J Diodes		Irradiated	ed Diodes		Exposure
(VDC)	5	9	1	2	e	* 4	(n/cm ²)
195.6	0.599	7.402	3.659	3.104	2.532	. 6.322	, (0) 6
195.6	4.012	7.352	•	3.401	2.701	6.649	_
2	3.882	7.312	4.091	3.622	2 772	702.9	_
2	•	7.722	4.282	3.812	2.852	7.00	4.3 (10)
195.6	4.001	7.301	4.462	3.952	2.942	7.014	f 9
195.6	3.002	7.248	4.442	4.042	3.002	7.111	2 4
195.6	3.922	7.203	4.671	4.331	3.182	7,001	-
195.6	3.902	•	5.012	4.692	3.392	7.542	1.4(11)
195.6	3.913	. •	5.202	4.942	3.542	7,199	1.5(11)
195.6	4.001	7.079	5.001	5.443	3.782	8.007	1.8 (11)
195.6	4.441	7.522	6.232	6.101	4.242	8,069	2.0 (11)
195.6	5.039	7.629	8.132	8.202	5.402	9.724	2.5(11)
\sim	5.501	8.009	9.602	9.701	6.302	10,602	• •
5	6.012	8.108	11.012	11.001	7.141	11.504	
195.6	4.051	6.641	10.232	10.442	6.802	10.202	5.4 (11)
195.7	•	6.702	11.003	11.002	7.149	10.432	5.7(11)
ا زی	4.202	6.767	17.119	12.601	7.829	11.012	6.4 (11)
٠, ۱	•	6.922	15.299	16.203	9.782	12.411	1.1 (12)
195.7	•	6.742	16.792	17.512	10.401	12.842	2.1 (12)
٠, ۱	. 7	6.859	18.109	19.182	11.303	13.049	3.1 (12)
ח ו	٠	6./42	23.042	25.682	14.507	15.699	6.6 (12)
195./	•	•	29.342	37.801	18.001	18.049	8.6 (12)
195.7	4.142	6.912	40.039	50.802	77.041	25.462	_
195.7	ı	4.39	60.12	67.64	30.39	30.00	1.6 (13)
	1	1	130.03		58.00	45.99	2.5 (13)
	1	i	•	4	•	74.99	.2 (1
195.7	1 1	1 3	359.99	320.39 403.01	115.09	110 95	3.6 (13)
					٠l	•	

3.4 CAPACITORS AND RESISTORS

The capacitors and resistors showed no change due to irradiation in either the $160^{\circ}F$ or $100^{\circ}F$ irradiation. A small effect due to temperature was evident. Representative capacitor data are tabulated in Tables 3-74 thru 3-77. The resistor data are tabulated in Tables 3-75 and 3-77. The instrumentation used for these tests is shown in Figure 1-8.

The 400 cycle stressing voltage of 485 volts coupled into the capacity bridge caused a decrease in the bridge sensitivity at times. The data tables reflect this and it is noticeable by the fewer number of digits in the dissipation factor. The data spread of the capacity measurements is approximately .04% for the C1 capacitors and .07% for the C2 capacitors with the 400 cycle coupling considered. The dissipation factor data spread is approximately 6% for the C1 capacitors and 5% for the C2 capacitors. All measurements were made at 1 KC. Checks at 400 cps indicated the same values but measurements were affected by beats between the different 400 cycle sources.

The accuracy of the resistor measurements was affected by the short term stability of the power supplies. The data indicates the presence of drift, however, it is small and in the order of 0.1%.

TABLE 3-74 CAPACITORS CI AND C2 AT 160°F

				Capacitor Cl	(10CPM-1)	74) 160°F a	Capacitor C1 (10CPM-174) 160 ^o F at 1 KC Nominal .17 µf	10 . 17 µf				
	(1-7	8-IJ	α	6-17	0.		C1-10	ָ כ	C1-11		(1-12	Elapsed
U	DF	, 0	DF	U	DF	J	DF	U	DF	U	10	@ 160°F
170032	70032 .004541	170140	70140 .004465	170191	.004500	170144	.004565	170139	70139 .004510	170140	.004500	Amb. Temp.
170410	.004897	170440	70440 .004999	170374	.004800	170420	.004800	170350	.004800	170332	.004800	15 H
170370	.0052	170400	.0053	170380	.00477	170350	.0054	170320	.005	170307	.00483	29 H
170354	.0050	170444	.00499	170380	.00482	170340	.0052	170340	.00499	170300	.00484	39 H
170340	.0052	170450	.0051	170380	.0048	170420	.0053	170300	.0048	170300	.0049	54 H
170364	70364 .00502	170465	.004991	170374	.00477	170374	.00500	170246	170246 .004720	170263 .00474	.00474	48 H

Total Exposure 1.3 (12) n/cm² and 4.4 (6) Rads - Cap. in Pt; DF in %.

				Capictor C	.2 (GE-89)	160°F at 1 K	Capictor C2 (GE-89) 160 ^o F at 1 KC Nominal .0062 µf	.0062 μf				
										,		Elapsed
C2-7	7	, C2-8	œ	C2-9	-6	C2-10	-10	C2-11		C2-12	12	Time
U	DF	U	DF	U	DF	C	DF	C	DF	၁	DF	@ 160°
6233.3 .000720	.000720	6470.10 .000721	.000721	6128.53 .000721	.000721	6462.53 .000740	.000740	6298.00 .000900	.000900	6506.00 .000995	.000995	Amb. Temp.
6265.57 .000899	.000899	6503.32 000870	.000870	6159.80	.000860	6495.40	668000.	6327.60 .000900	006000	6534.40 .000896	968000.	15 H
6266.70 .00089	.00089	6504.72	6504.72 .000883	6161.20	.00088	6500.00	.00084	6328.40 .00088	.00088	6536.23 .000905	.000905	29 н
6264.63 .000865	.000865	6502.76	6502.76 .000872	6159.34	.000864	6494.74	.000893	6330.23 .000895	.000895	6538.54 .000905	.000905	36 н
6266.91 000900	006000	6505.15	6505.15 .000890	6161.54	.000885	6496.60	516000.	6328.06 .000885	.000885	6535.70 .000900	006000.	2 ± 2
6262.76 .000862	.000862	6500.69 .000852	.000852	6157.18	6157.18 .000846	6492.12 .000872	.000872	6327.40 .000852	.000852	6531.32 .000866	998000	Н 89

Total Exposure 9.34 (11) n/cm 2 and 2.9 (6) Rads - Cap in Pf; DF in %.

TABLE 3-75 RESISTORS RI AND R2 AT 160°F

		Resistor R1	Resistor R1 (GE-86) 160°F Nominal 1000 D.	1 1000 D		
R1-7	R1-8	R1-9	R1-10	R1-11	R1-12	@ 1ed
936.2	930.5	937.0	931.5	931.2	936.8	Amb. Tomp.
936.0	930.1	936.5	931.0	930.6	938.3	15 H 30'
935.7	929.6	936.0	930.5	930.0	937.6	29 H 30'
0.0	930.0	936.4	930.9	930.5	938.1	38 H 86
936.0	930.0	936.3	930.8	930.4	938.0	53 H 30'
936.3	930.4	937.0	931.6	931.3	938.9	н 29

Total Exposure 9.34 (11) n/cm and 2.9 (6) Rads - R in ohms.

		Resistor R.	Resistor R2 (GE-87) 160°F Nominal 698KD	al 698KB		
						Elapsed
R2-7	R2-8	R2-9	R2-10	R2-11	R2-12	@ 160°F
695.77	6%.07	695.95	695.53	698.35	698.14	Amb. Temp.
695.23	695.77	695.46	695.14	698.17	697.27	19. 19.
695.22	696.13	695.56	695.43	698.35	697.30	Ħ
695.03	695.77	695.52	694.97	698.30	6%.85	¥
694.60	695.22	694.87	694.87	697.65	696.95	57 H
695.38	695.80	695.68	695.62	698.35	697.05	Н 02

Total Exposure 9.34 (11) n/cm and 2.9 (6) Rads - R (-3) ohms.

TABLE 3-76 CAPACITORS CI AND C2 AT 100°F

				Capacitor C	1 (10CPM-	Capacitor C1 (10CPM-174) 100°F Nominal .17 µf	Vominal .17	IL F				
												Elapsed
Ū	1-13	ū	C1-2	ت ا	C1-3	Ū	C1-4	U	C1-5	U	C1-6	Time
U	DF	U	DF.	U	DF	U	DF	U	DF	J	DF	@ 1 00'F
170100 .0046	.0046	170100 .0049	.0049	170105	.0049	170100	.00459	170000 00045	.0045	170070	70070 .00459	Amb. Temp
170187	70187 .00482	170100 .005	.005	170150	.0049	170135	.0047	170100	.0046	170130 .0046	.0046	Ξ.
170170 .0047	.0047	17021	.005	17020	.0049	17018	.0047	170083	.0046	170150	.0047	17 H
170190 .0049	.0049	170200	.005	17020	.0049	17019	.0047	17009	.005	17013	.0047	29 H
17019	. 0049	17020	.005	17020	.0049	17020	.0049	17010	.005	17012	.0048	62 H

Total Exposure 8.2 (13) n/cm^2 and 7.2 (6) Rads - Cap. in Pf and DF in %.

				Capacit	or C2 (GE-8	39) 100°F N	Capacitor C2 (GE-89) 100°F Nominal .0062 µf	2 µf				
												Elapsed
C2-1	-	C2-2	-2	C2-3		C2-4	4	C2-5	.5	C2-6	9-	Time
	5	U	70	U	PF	U	DF	C	DF	O	DF	@ 100 F
6201.45 .000778	8//00	6403.54	6403.54 .000743	6334.82	.000830	6291.66	.000763	6496.30 .000742	.000742	6369.51 .000747	.000747	Amb. Temp.
6207.20 .000771	17200	6409.41 000743	.000743	6340.00	.000839	6296.87	.000765	6504.00 .00074	.00074	6376.75 000766	992000.	I
6209.51 .000776	92200	6411.80 .00078	.00078	6341.80	62000.	6299.42	.00078	6504.65 00079	.00079	87000. 02.77.89	82000.	17 H
6210.9 .00079	92000	6413.3 0008	9000.	6343.2	8000.	9.0089	.00079	6505.4 0008	8000	6378.5 00079	.00079	29 H
6210.9 .00079	6/00/	6413.4 00079	62000.	6343.5	9000.	6301.2	.00079	6504.0 .0008	8000.	6377.2 .00079	.00079	62 H

Total Exposure 4.4 (13) n/cm 2 and 4.7 (6) Rads – Cap. in Pf and DF in %.

TABLE 3-77 RESISTORS RI AND R2 AT 100°F

		Resistor R	Resistor R1 (GE-86) 100°F Nominal 1000 D	nal 1000 D		
						Elapsed
R1-1	R1-2	R1-3	R1-4	R1-5	R1-6	Time @ 100°F
936.0	936.3	931.4	931.0	936.7	930.8	Amb. Temp.
935.9	936.1	931.1	930.6	936.2	930.3	H 4
936.1	936.4	931.6	931.2	936.7	930.9	H 81
935.9	936.1	931.2	930.6	936.3	930.4	43 H 30'
936.7	937.0	932.3	931.8	937.6	931.8	62 H 30'

Total Exposure 4.4 (13) n/cm^2 and 4.7 (6) Rads - R in ohms

	Elapsed Time	Amb. Temp.	4 H 00'	17H 20	45 H 30'	61 H 40'
	R2-6	6%.50	6%.22	6%.3%	695.93	6%.04
imal 698 K C.	R2-5	6%.3%	696.16	696.46	16.569	10.969
Resistors R2 (GE-87) 100 ⁶ F Nonimal 698 K G	R2-4	696.24	80.969	696.16	695.36	695.84
Resistor	R2-3	96.969	696.95	696.95	696.29	696.57
	R2-2	698.33	698.23	698.35	697.44	698.02
	R2-1	696.50	696.36	696.40	695.77	696.23

Total Exposure 4.4 (13) n/cm^2 and 4.7 (6) Rads – R (-3) ohms

4.0 SUBASSEMBLIES

The initial phase of the test was devoted to checkout of each subassembly test panel. This check was both visual and operational. Each subassembly test panel was set up in the laboratory and the input varied to assure no shipping damage had been incurred and to establish agreement with AGC bench test data. The null or a representative operational point was recorded for each subassembly test panel. A complete set of data were recorded for one test panel of each type of subassembly. These pre-test bench data are included in the tables. The voltage divider and shunts were checked out to determine circuit load effect. Precision components were purchased or fabricated for this application.

During the visual examination some shipping damage was found on the 8 Diode Frequency Sensing subassemblies. The mounting of the two inductors had broken allowing the coils to bounce free. The glass wrapping tape was chaffed and worn through on a number of test items. The mounting was redesigned and replaced on all twelve 8 Diode test panels. The more severly damaged subassemblies had wire exposed to bright copper. A coil on SCR Trigger #3 was found to be open. A new coil was received from Aerojet and installed. Numerous screws were also either loose or missing and several insulators and terminal strips were broken. These were replaced as needed and the screws tightened.

The base plate of most test items was trimmed approximately 1/8" on all sides to reduce the overall size of the test package. This was necessary to keep the test in the shadow of the lithium hydride shield.

The voltage dividers that had been selected were installed in aluminum boxes and attached to the cables near the pit end so that they would be shielded from irradiation by the pit wall and protected from ambient temperature changes.

Voltage dividers and current shunts were accurately calibrated before and after the tests. Actual values were sufficiently close to nominal to permit the nominal values to be used in data reduction and with negligible error.

The receiving inspection checkout revealed that two of the 8 Diode frequency sensing units were damaged in shipment. To preclude any possibility of these units contributing to false indications of radiation effects, they were used as control items and assigned as previously control items were used as radiation test specimens. The test panels were then wired, the cabling continuity checked and the test moved to the reactor building.

The checkout at the reactor building revealed that wave shapes of almost all the subassemblies did not agree with bench test data at GNL and Aerojet. When normal trouble-shooting measures did not clear the problems, the test car was moved back to the REL for a complete checkout. The cabling was again continuity checked and a few minor errors found, however, these were not adequate to explain all the difficulties that had been encountered at the REF. Each subassembly was operated in turn through its cable and the characteristics checked. Each unit showed normal operating characteristics. The test car was moved back to the reactor building and reconnected to the instrumentation cabling.

During the initial setup and checkout period the automatic data system has been stepped manually from one unit to another. Under this condition the automatic system operated normally, however, when the switching was performed automatically at two seconds per point, the time response of the subassemblies proved too slow to allow switching from a set stressing condition to a measuring condition as had originally been planned. The switching as described in paragraph 3.2.1 of the Design Manual was, therefore, modified. The operational procedure was changed to allow the stressing condition to be set to the values for which the measurements were made. The circuit diagrams in the

design manual were revised to reflect this change. (Reference Figures 3-7 and 3-8.)

During this checkout period it was determined that the cable capacitance to ground of each of the instrumentation points was the primary cause of the difficulties which had been encountered. The capacitances, in order of .01 μ f for the 300 foot section, caused extensive couplings throughout the system, and changed the operating characteristics of the circuits. To eliminate or minimize the effects of cable capacitance to ground, the following changes were made:

4 Diode Frequency Sensing Circuit, ref. Design Manual Figure 3.7, four 1.2 megohm resistors were added, see Figure 4-7 -

Between Points A and V 1

Points C and V 3

Points J and V2

Points G and V 4

8 Diode Frequency Sensing Circuit, Figure 4–12. Similar changes were tried on the 8 Diode Frequency Sensing units as had been employed on the 4 Diode units but little improvement was observed. The following changes were made on one panel (Serial 8 only). Add four 1.5 megohm resistors –

Between Points A and V 1

Points C and V 3

Points J and V 2

Points G and V 4

Voltage Sensing Circuit, Figure 4-1 -

Delete the 3K ohm resistor from voltage divider for V 1. Note: The 3.6 megohm resistor was left in the circuit to isolate point F from the instrumentation cable capacitance. Oscilliscope pictures, Figure 4-6, show normal wave shapes in place at the REF.

Magnetic Amplifier and SCR Control and Trigger Circuits, Figures 4–16 and 4–19. A 2.5 μ f capacitor was added in parallel to each inductor in the load of these units to reduce the effect of the noise.

The 160°F irradiation test divided the time equally between manual and automatic data systems. The correlation found between the data taken on the backup panel and the automatic data system proved to be good and since the automatic system was much faster, it was decided to take the majority of the 100°F data on the automatic system. The change in procedure permitted additional points to be monitored completely mapping the operating characteristics of all subassemblies. The following tables should replace the tabulation shown at the top of page 25 of the design manual for the 100°F run.

SCR Panels, ref. Design Manual Section 3-11

The SCR panels were extremely noisy and sensitive to pickup. Satisfactory data could be obtained on them only when they operated individually. The procedure was changed accordingly.

SCR D/L M
2.0
4.0
5.0
6.0
7.0
7.5
8.0
8.5

One at a time.

VS and MA panels off.

Set voltage on Var. #2, 208 V.

Read I_2 on millivac and type into Flexowriter.

Return SCR, VS and MA to normal voltage.

100°F Run

4D Frequency Sensing Period × 10 Sec.	8D Frequency Sensing Period x 10 ⁶ Sec.	Mag. Amp. (D/L Mv)	VS
2400	2350	1.0	190
2430	2400	1.5	196
2450	2450	2.0	200
2470	2500	2.5	206
2480	2550	3.0	210
2490	2600	3.5	216
2500		6.0	220
2510		9.0	226
2520 ·		Between runs set	Between runs set
2530		to approx. 2 mv	at approx. 208 V
2550			
2570	·		
2600			

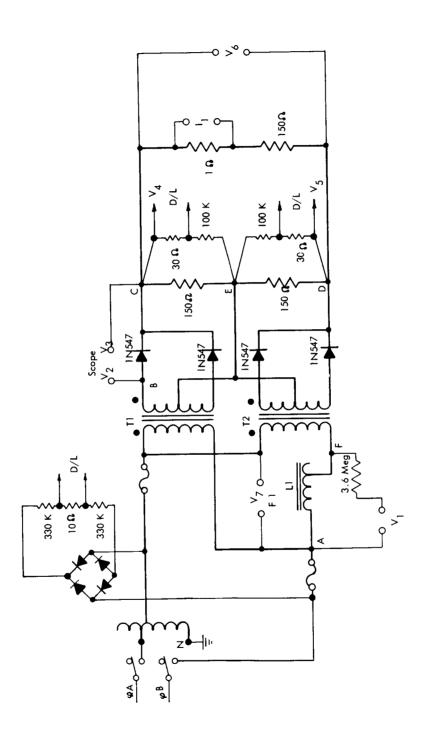
The total dose for each subassembly is shown in Tables 4-39, 4-78, 4-118, 4-128, 4-132 and 4-135.

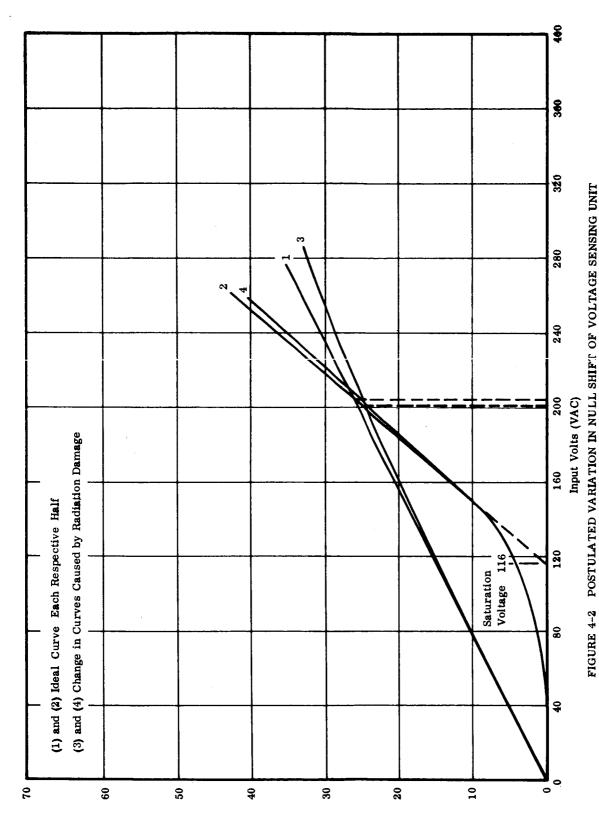
4.1 VOLTAGE SENSING

Between runs set to 2500 and 120 V

The output of the voltage sensing units was not affected at 2×10^{11} n/cm². There was a slight trend at the end of the 160° F run and at an equivalent dose on the 100° F run. There were no differences in the effects seen between the 100° F and 160° F tests at equal doses. Changes in circuit performance were due to increased forward drops in the 1N547 diodes used in this circuit. Figure 4-6 shows the saturable reactor voltage and diode CR 1 voltage for VS **8 at pre-test, just prior to 2×10^{11} n/cm² and at greater than 2×10^{11} n/cm² exposure. No change in wave form can be noted.

At the conclusion of the 100°F run changes in the diodes had caused noticeable changes in the output of each half of the voltage sensing circuit. However, the differential voltage, V6, was very nearly the same magnitude. The plot of Unit #1, shown in Figure 4-3, shows a shift in null. A change of approximately 4 volts in null voltages is believed to be caused by an unbalance in the four diodes in the circuit. Figure 4-4 is a plot of the forward voltage characteristics of each of the diodes removed from the unit. It is evident that Diode #2 was affected much more than the other three.


The differential voltage, V6, in Figure 4-3 shows a rather wide variation. Data tabulated for the control units show a similar variation. This variation is likely an accumulation of tolerances in the measurements rather than changes in subassembly operation. With an accuracy of + .5% for the voltage recording of each half, a variation of differential voltage of approximately + .25 volts could be expected. The voltages recorded for each half (V4 and V5) are of sufficient accuracy to show any changes that occurred due to irradiation. An adequate number of data points were obtained to ascertain the null shifts. Tables 4-3 thru 4-38 show complete sets of these data at selected radiation exposures.


Data from the bench test tests are included in Tables 4-1 and 4-2. These data include the null voltage for all units prior to test. During the post test a short circuit destroyed the diodes of VS #1. VS #2 was used for post test investigations.

Comparison of pre- and post-irradiation bench test data shows changes in output and null of the same order as that taken at the reactor, however, the absolute magnitude were slightly different. The difference was due to the load dependancy of the circuit. The load across the differential output was varied during the post irradiation bench tests and it was found that the null could be shifted from 207 to 204 volts by changing the load resistance from 140 to 200 ohms. The actual load

resistance under irradiation test conditions was greater than in the laboratory because of the additional line resistance present at the REF. Replacement of the four diodes in an irradiated unit with diodes removed from a control unit restored the null to the pre-irradiation value.

The cause of the null shifts can be seen clearly in Figure 4-2. The output from the side without the saturable reactor is approximately a straight line as is shown Curve 1. The output from the side with the saturable reactor is shown in Curve 2. The output of this side would be low until the reactor saturates at which time, because of the greater turns ratio, it would begin to rise at a greater slope than for the other side. The intersection of these two curves is the null point. If the voltage drop of the diodes increases rapidly with forward current the output from each half will deviate from the original line as shown in Curves 3 and 4. When the diode drops become unequal, as occurred during irradiation, one side will have an appreciably higher voltage drop than the other causing the intersection of the two lines to shift. The shift will be a lower voltage if the losses increase in Side 1 and a higher voltage if Side 2 losses increase. While this conclusion appears to be perfectly sound, additional tests will be run in which the diodes in the two sides will be interchanged and measurements made to verify the null shifts. Results of this test will be included in a supplemental report.

Output Volts (VDC)

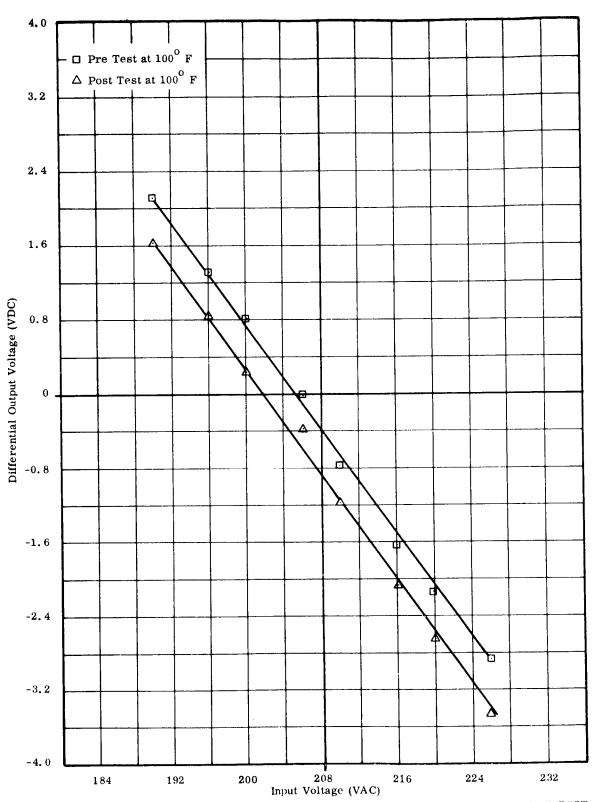


FIGURE 4-3 INPUT VOLTAGE VERSUS DIFFERENTIAL OUTPUT VOLTAGE, PRE AND POST MEASUREMENTS AT REACTOR FACILITY VOLTAGE SENSOR, SN#A-1

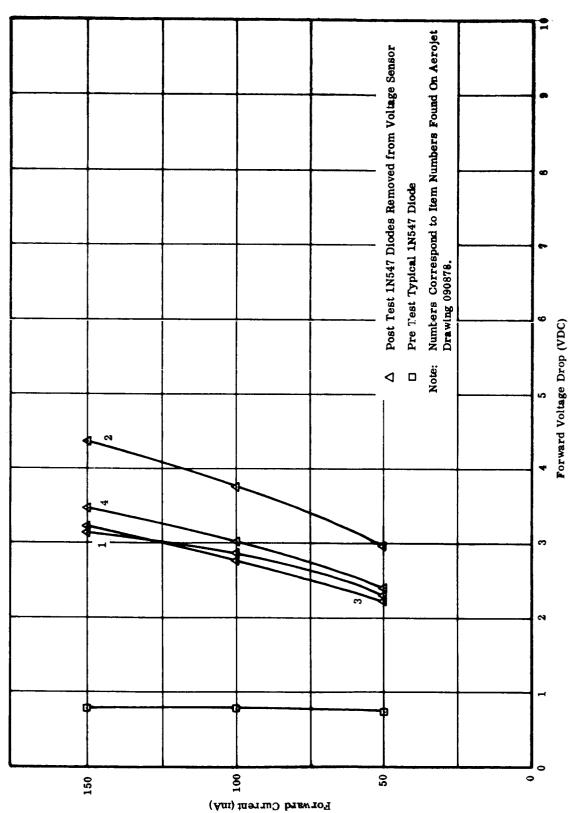
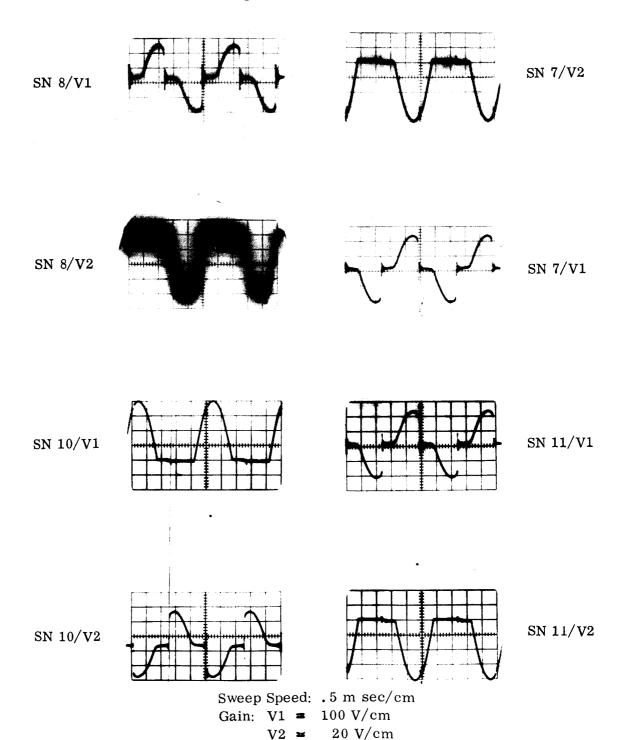
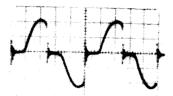
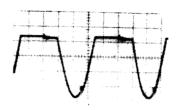


FIGURE 4-4 FORWARD CHARACTERESTICS, POST TEST (100° F), 1N547, REMOVED FROM VOLTAGE SENSOR #1, SN#A1

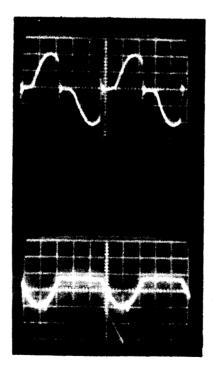
Date: 7/6/64

Time: Pre-Irradiation Input Voltage: 212 Vac


FIGURE 4 - 5 CHECK-OUT WAVE SHAPES ON VOLTAGE SENSING UNIT

Date: 7/7/64 Time: 1920 Hours


SN 8/V1

Gain: 100 V/cm

SN 8/V2

Gain: 20 V/cm

SN 8/V1

Gain: 100 V/cm

SN 8/V2

Gain: 50 V/cm

Sweep Speed: .5 m sec/cm

FIGURE 4 - 6 VOLTAGE SENSING UNIT WAVE SHAPES DURING 160°F IRRADIATION

TABLE 4-1 FUNCTIONAL PRE-TEST AT LABORATORY VOLTAGE SENSING UNIT

S/N	V7 at Null (VAC)	V4 at Null (VDC)
A1	209.2	26.2
A2	210.0	26.5
А3	210.0	27.6
А4	212.0	26.9
A5	210.0	27.9
A6	209.0	27.4
A7	208.0	27.1
A8	210.0	27.5
А9	210.0	26.5
A10	206.5	27.0
All	210.0	27.3
A12	210.0	26.5

(idinO	Output Current (MA DC) L	V4 (VDC)	4. (O)	V5 (VDC)	5 (C)	Rec (V)	Reactor (VAC)
Before	After	Before	After	Before	After	Before	After
-15.5	-21.0	20.70	23.28	18.42	20.14	126	126
-13.0	-19.0	20.98	23.58	19.05	20.75		
-11.5	-17.0	21.23	23.88	19.50	21.36		
-9.6	-15.0	21.51	24.16	20.08	21.91		
-7.8	-13.0	21.78	24.42	20.61	22.47		
-6.0	-11.0	22.05	24.70	21.15	23.04		
-4.5	-9.0	22.29	25.00	21.62	23.63	131	131
-2.6	-7.4	22.56	25.22	22.17	24.09		
-1.2	-5.4	22.79	25.53	2261	24.70		
8.0	-3.7	23.04	25.79	23.15	25.23	133	
3.2	-1.8	23.26	26.08	23.73	25.80		
4.7	0.0	23.50	26.34	24.20	26.35		75
6.5	2.4	23.79	26.64	24.79	26.98		
8.0	3.9	24.03	26.89	25.22	27.47		
6.6	6.1	24.32	27.18	25.80	28.09		
11.5	8.	24.55	27.44	26.24	28.61		
13.0	6.6	24.80	27.74	26.75	29.26		
15.0	12.0	25.10	28.00	27.33	29.73		
16.5	14.0	25.39	28.27	27.88	30.30	138	88

Before - Unit with Irradiated Diodes After - Unit with S/N A-12 Diodes Substituted

TABLE 4-3 VOLTAGE SENSING S/N 1 PRE-TEST AT 100°F

	Input		Output de Volts	
i	Voltage	Half	Half	Differential
э - ш	Volts RMS	Output	Output	Output
		^4	٧5	7/8
2152	061	23.37	21.27	2.100
2156	196	24.24	22.94	1.300
2200	200	24.70	23.90	.800
2203	206	25.64	25.81	167
2207	210	26.31	27.07	767
2210	216	27.04	28.67	-1.634
2214	220	27.71	29.84	-2.134
2218	226	28.44	31.31	-2.867
	<u>.</u>			

	Τ_			r									
	Differential	Output	9/		2.167	1.134	.500	400	-1.034	-1.834	-2.400	-3.401	
Output de Volts	Half	Output	٧5		20.97	22.97	24.24	25.97	27.24	28.81	29.97	31.91	
	Half	Output	٧4		23.14	24.10	24.74	25.57	26.21	26.97	27.57	28.51	
Input	Voltage	Volts RMS			190	196	200	206	210	216	220	226	
	Time				2315	2318	2322	2326	2330	2335	2339	2342	

Neutron Exposure 3.2 (11) nvt Gamma Dose 1.44 (6) Rads

TABLE 4-5 SENSING S/N 1 AT END OF TEST WITH LIH SHIELD

				 								
	Differential	Output	V6	 1.867	1.000	. 433	-,467	-1.000	-1.867	-2.367	-3.367	
Cutput de Volts	Half	Output	٧5	 21.44	23.07	24.24	26.04	27.14	28.87	29.91	31.94	
	Half	Output	74	23.30	24.07	24.67	25.57	26.14	27.01	27.54	28.57	
Input	Voltage	Volts RMS		061	961	200	506	210	216	220	226	
	\{\{\}	V		1616	1619	1623	1626	1630	1633	1637	1641	

Neutron Exposure 7.5 (11) nvt Gamma Dose 2.13 (4) Rads

TABLE 4-6 VOLTAGE SENSING S/N 1 POST-TEST AT 100°F

	T-		1	 								
	Differential	Output	9/	1.634	.833	.233	-,367	-1.167	-2.067	-2.634	-3.467	
Output dc Volts	Half	Output	٧5	19.97	21.57	22.80	24.07	25.64	27.31	28.44	30.21	
	Half	Output	٧4	21.60	22.40	23.04	23.70	24.47	25.24	25.81	26.74	
Input	Voltage	Volts RMS		 190	961	200	206	210	216	220	226	
	Time			 0927	0932	9860	0941	0948	0953	2560	1001	

Neutron Exposure 4.4 (13) nvt Gamma Dose 3.4 (6) Rads

TABLE 4-7 VOLTAGE SENSING S/N 2 PRE-TEST AT 100°F

	Differential	Output	9/	2.167	1.400	2%.	0.0	009	-1,500	-1.967	-2,767	
Output de Volts	Half	Output	٧5	21.30	22.94	23.90	25.81	27.07	28.67	29.81	31,31	
	Half	Output	٧4	23.47	24.34	24.87	25.81	26.47	27.17	27.84	28.54	
inpu:	Voltage	Volts RMS		190	396	200	206	210	216	220	226	
	Ţ.) - - -		2152	2156	2200	2203	2207	2210	2214	2218	

TABLE 4-8 VOLTAGE SENSING S/N 2 AT END OF LOW POWER RUN

<u> </u>				 								
	Differential	Output	9/	 2.234	1.300	.567	-,333	-1.000	-1.734	-2.300	-3.301	
Output dc Volts	Half	Output	٧5	21.00	22.97	24.30	25.97	27.34	28.87	29.97	31.94	
	Half	Output	/4	23.24	24.27	24.87	25.64	26.34	27.14	27.67	28.64	
Inpuŧ	Voltage	Volts RMS		190	961	200	206	210	216	220	226	
	Time			2315	2318	2322	2326	2330	2335	2339.	2342	

Neutron Exposure 3.2 (11) nvt Gamma Dose 1.27 (6) Rads

TABLE 4-9 VOLTAGE SENSING S/N 2 AT END OF TEST WITH LIH SHIELD

	Differential	Output	7.6		1.934	1.200	. 533	333	006	-1.800	-2.267	-3.234	
Output de Volts	Half	Output	ν5		21.47	23.04	24.27	26.04	27.17	28.94	29.94	31.97	
	Half	Output	74	<u>i</u>	23.40	24.24	24.80	25.71	26.27	27.14	27.67	28.74	
Input	Volitage	Volts RMS			190	%:	200	206	210	216	220	226	
	Ë	e E E			1616	1619	1623	1626	1630	1633	1637	1641	

Neutron Exposure 7.5 (17) nvt Gamma Dose 1.87 (6) Rads

TABLE 4: 10 VOLTAGE SENSING S/N 2 POST-TEST AT 100°F

	Differential	Output	7,6	2,100	1.334	.800	.033	600	-1.534	-2.067	-2.834	
Output de Volts	Half	Output	٧5	19.70	21.30	22.44	23.90	25.24	26.97	28.07	29.81	
	Half	Output	/4	21.80	22.64	23.24	23.94	24.64	25.44	26.01	26.97	
Inpe	Voltage	Volts RMS		061	195	200	506	210	216	220	226	
	<u>.</u>	υ 		0927	0932	0936	0941	0948	0953	0957	1001	

Neutron Exposure 4.4 (13) nvt Gamma Dose 3.0 (6) Rads

TABLE 4-11 VOLTAGE SENSING S/N 3 PRE-TEST AT 100°F

			-	 								
	Differential	Output	9/	2.467	1.667	1.200	.200	333	-1.267	-1.767	-2.567	
Output de Volts	Half	Output	٧5	20.90	22.57	23.50	25.44	26.64	28.27	29.41	21.04	
	Half	Output	/4	23.37	24.24	24.70	25.64	26.31	27.01	27.64	28.47	
Input	Voltage	Volts RMS		 190	196	200	206	210	216	220	226	
	Time			2152	2157	2200	2204	2207	2211	2215	2218	

TABLE 4-12 VOLTAGE SENSING S/N 3 AT END OF LOW POWER RUN

Neutron Exposure 4.27 (11) nvt Gamma Dose 2.59 (6) Rads

TABLE 4-13 VOLTAGE SENSING S/N 3 AT END OF TEST WITH LIH SHIELD

	Differential	Output	9/	2,167	1.400	.767	067	633	-1,534	-1.967	-3.034	
Output de Volts	Half	Output	٧5	21.10	22.67	23.90	25.64	26.77	28.54	29.51	31.57	
	Holf	Output	7.4	23.27	24.07	24.67	25.57	26.14	27.01	27.54	28.54	
Input	Voltage	Voits RMS		190	196	200	206	210	216	220	226	
	Time			1616	6191	1523	1627	1630	1633	1637	1641	

Neutron Exposure 1.0 (12) nvt Gamma Dose 3.8 (6) Rads

TABLE 4-14 VOLTAGE SENSING S/N 3 POST-TEST AT 100°F

	Input		Output de Volts	
Time	Voltage	Half	Half	Differential
	Volts RMS	Output	Output	Output
		74	٧5	λ6
0927	190	20.50	18.44	2.067
0932	196	21.30	19.94	1.367
0936	200	21.87	21.04	.833
0942	506	22.64	22.44	.200
0948	210	23.27	23.77	500
0953	216	24.07	25.41	-1.334
2560	220	24.64	26.44	-1.800
1001	226	25.61	28.14	-2.534

Neutron Exposure 6.3 (13) nvt Gamma Dose 6.1 (6) Rads

TABLE 4–15 VOLTAGE SENSING S/N 4 PRE–TEST AT 100°F

/olts	Differential	Output	V6	2.167	1.400	006.	067	009*-	-1.534	-1.967	-2,701	
Output dc Volts	Half	Output	V5	21.30	22.97	23.94	25.87	27.07	28.67	29.81	31,34	
	Half	Output	7.4	23.47	24.37	24.84	25.81	26.47	27.14	27.84	28.64	
- Doort	Voltage	Volts RMS		190	196	200	206	210	216	220	226	
	; ;	<u>v</u>		2152	2157	2200	2204	2207	2211	2215	2218	

							-						
	Differential	Output	76		2.267	1,234	.633	333	933	-1.734	-2.300	-3.267	
Output de Volts	Half	Output	٧5		20.97	23.04	24.27	26.04	27.24	28.87	29.97	31.91	
:	Half	Output	7.4		23,24	24.27	24.90	25.71	26.31	27.14	27.67	28.64	
Input	Voltage	Volts RMS			190	196	200	206	210	216	220	226	
	Time	•			2315	2318	2322	2326	2331	2336	2339	2342	

Neutron Exposure 4.27 (11) nvt Gamma Dose 2.59 (6) Rads

TABLE 4-17 VOLTAGE SENSING S/N 4 AT END OF TEST WITH LIH SHIELD

Neutron Exposure 1.0 (12) nvt Gamma Dose 3.59 (6) Rads

TABLE 4-18 VOLTAGE SENSING S/N 4 POST-TEST AT 100°F

	Differential							0	7			
	Differ	Output	9/	1.467	.567	. 167	567	-1.200	-1.967	-2.500	-3.401	
Output de Volts	Half	Output	٧5	19.10	20.80	21.77	23.27	24.57	26.14	27.24	29.04	
	Half	Output	۸4	20.57	21,37	21.94	22.70	23,37	24.17	24.74	25.64	
Input	Voltage	Volts RMS		190	961	200	206	210	216	220	226	
	Time	,		0927	0932	0936	0942	0948	0953	2560	1001	

Neutron Exposure 6.3 (13) nvt Gamma Dose 6.3 (6) Rads

TABLE 4-19 CONTROL VOLTAGE SENSING S/N 5 PRE-TEST AT 100°F

	Input		Sutput de Volts		
Time	Voltage	Half	Half	Differential	
	Volts RMS	Output	Output	Output	
		/4	٧5	۸6	1
2152	190	23.37	21.34	2.034	
2157	961	24.27	23.00	1.267	
2200	200	24.77	24.00	792.	
2204	206	25.74	25.97	233	
2207	210	26.37	27.17	800	
2211	216	27.07	28.74	-1.667	
2215	220	27.67	29.81	-2.134	
2218	226	28.47	31.41	-2.934	

TABLE 4-20 CONTROL VOLTAGE SENSING S/N 5 POST-TEST AT 100°F

	Input		Output de Voits	
ï	Voltage	Half	Half	Differential
<u> </u>	Volts RMS	Output	Output	Output
		٧4	٧5	7/6
0927	190	23.57	21.40	2.167
0932	196	24.37	23.10	1.267
9840	200	24.97	24.27	.700
0942	206	25.77	25.81	033
0948	210	26.41	27.24	833
0953	216	27.21	28.91	-1.700
260	220	27.77	30.11	-2.334
1001	226	28.67	31.91	-3.234

TABLE 4-21 CONTROL VOLTAGE SENSING S/N 6 PRE-TEST AT 100°F

.50 .37 .90 .84
.50 .37 .90 .84
27.14 28.97
27.81 30.01
31.67
_

TABLE 4-22 CONTROL VOLTAGE SENSING S/N 6 POST-TEST AT 100°F

Timo			21.2. 22. 22.2.	
		Half	Half	Differential
)	Voltage	Output	Output	Output
	Volts RMS	74	٧5	۸6
0927	190	23.64	21.64	2.000
0932	961	24,47	23.30	1.167
0936	200	25.07	24.50	.567
0942	206	25.84	26.07	233
0948	210	26.51	27.47	967
0953	216	27.31	29.17	-1.867
2960	220	27.91	30.37	-2.467
1001	226	28.81	32.21	-3.401

TABLE 4-23 VOLTAGE SENSING S/N 7 PRE-TEST AT 160°F

	Differential	Output	γ6		, oc.	-1.967	-3.267	
Output de Volts	Half	Output	٧5		73.00	28.41	30.74	
	Half	Output	٧4	6	73.7/	26.44	27.47	
Input	Voltage	Volts RMS		ò	1,00	212	220	
	Ti Ei				\$0.0	0157	0201	

TABLE 4-24 VOLTAGE SENSING S/N 7 AT END OF LOW POWER RUN

				 							·	
	Differential	Output	9/	1.067	2.667	-4.668	-1.067	-1.667	-2.967	-3.801	-4.167	
Output de Volts	Half	Output	٧5	 22.30	23.90	25.34	26.44	27.74	30.24	31.91	32,81	
	Half	Output	٧4	23.37	24.17	24.87	25.37	26.07	27.27	28.11	28.64	
Input	7.1	Voltage	Volts RMS	190	195	200	204	208	217	223	225	
	i E	,		1054	1058	1011	1105	1109	1113	1116	1120	

Neutron Exposure 3,48 (11) nvt Gamma Dose 1.56 (6) Rads

TABLE 4-25 VOLTAGE SENSING S/N 7 POST-TEST AT 160°F

Neutron Exposure 7.5 (11) nvt Gamma Dose 2.13 (6) Rads

4**-** 38

TABLE 4-26 VOLTAGE SENSING S/N 8 PRE-TEST AT 160°F

	Differential Output V6	.567	-2.934			
Output dc Volts	Half Output V5	23.64	30.67			
	Half Output V4	24.20	27.74			
Input	Voltage Volts RMS	196	220			
	Time	0154	0201			

TABLE 4-27 - VOLTAGE SENSING S/N 8 AT END OF LOW POWER RUN

Output dc Volts	Differential	Output	۸۸	1,334	009.	200	767	-1.334	-2.667	-3.501	-3.934	
	Half	Output	٧5	22.14	23.70	25.17	26.27	27.57	30.11	31.81	32.71	
	Half	Output	٧4	23.47	24.30	24.97	25.51	26.24	27.44	28.31	28.77	
Input	Voltage	Volte RMS		190	195	200	204.	. 208	217.	223.	225.	
	Time			1054	1058	1011	1105	1109	1113	1116	1120	

Neutron Exposure 3.48 (11) nvt Gamma Dose 1.37 (6) Rads

TABLE 4-28 VOLTAGE SENSING S/N 8 POST TEST AT 160°F

				 						-		
Output de Volts	Differential	Output	76	1.367	009.	.0	667	-1.100	-1.767	-2.334	-2.934	
	Half	Output	٧5	22.27	23.77	24.90	26.14	27.07	28.41	29.54	30.74	
	Half	Output	٧4	23.64	24.37	24.90	25.47	25.97	26.64	27.21	27.81	
Input	7/6/6	voi:age	Voits RMS	190.	196.	200.	204.	208	212.	216.	220.	
	Time		0230	0237	0237	0238	0239	0240	0241	0242		

Neutron Exposure 7.5 (11) nvt Gamma Dose 1.87 (6) Rads

TABLE 4-29 VOLTAGE SENSING S/N 9 PRE-TEST AT 160°F

			_	·			
	Differential	Output	9/	.733	-1.700	-2.967	
Output de Volts	Half	Output	٧5	23.34	28.14	30.47	
	Half	Output	٧4	24.07	26.44	27.51	
Input	Voltage	Volte RMS		196.0	212.0	220.0	
	Time)		0154	0157	0201	

TABLE 4-30 VOLTAGE SENSING S/N 9 AT END OF LOW POWER RUN

	Input		Output dc Volts	
Time	Voltage	Half	Half	Differential
	265107 707	Output	Output	Output
	COUS NACO	٧4	٧5	۸6
1054	190	23.34	21.97	1.367
1058	195	24.14	23.50	.633
1011	200	24.87	24.97	-1.000
1105	204	25.37	26.07	700
1109	208	26.07	27.44	-1.367
1113	217	27.31	29.91	-2.601
9111	223	28.14	31.57	-3.434
1120	225	28.64	32.57	-3.934

Neutron Exposure 4.64 (11) nvt Gamma Dose 2.78 (6) Rads

TABLE 4-31 VOLTAGE SENSING S/N 9 POST-TEST AT 160°F

	Differential	Output	%	1.467	.500	.0	799	-1.134	-1.834	-2.367	-2.967	
Output de Volts	Half	Output	٧5	21.70	23.67	24.74	25.97	26.94	28.27	29.37	30.57	
	Half	Output	74	 23.17	24.17	24.74	25.31	25.81	26.44	27.01	27.61	
Input	Voltage	Volts RMS		190	196	200	204	208	212	216	220	
	Time			0231	0237	0238	0238	0239	0240	0241	0242	

Neutron Exposure 1.0 (12) nvt Gamma Dose 3.8 (6) Rads

4-44

TABLE 4-32 VOLTAGE SENSING S/N 10 PRE-TEST AT 160°F

									*	 	
	Differential	Output	^	.200	-2.134	-3.301		•••			
Output de Volts	Half	Output	٧5	24.07	28.74	30.97					
	Half	Output	٧4	24.27	26.61	27.67				-	
Input	900+10/	Volte BMC	VOIIS MMS	961	212.	220.					
	Time			0154	0157	0201					

TABLE 4-33 VOLTAGE SENSING S/N 10 AT END OF LOW POWER RUN

	Input		Output de Volts	
Time	Voltage	Half	Half	Differential
	Volts RMS	Output	Output	Output
		٧4	٧5	9/
1054	190	23.54	22.54	1.000
1058	195	24.34	24.14	.200
1101	200	24.97	25.57	009
1105	204	25.57	26.57	-1.000
1109	208	26.24	27.97	-1.734
1113	217	27.47	30.47	-3.001
1116	223	28.34	32.14	-3.801
1120	225	28.77	33.11	-4.334

Neutron Exposure 4.64 (11) nvt Gamma Dose 2.78 (6) Rads

TABLE 4-34 VOLTAGE SENSING S/N 10 POST-TEST AT 160°F

	-=												
	Differential	Output	9/		1.100	790.	367	-1.000	-1.467	-2.167	-2.734	-3.301	
Output de Volts	Half	Output	٧5		22.27	24.27	25.31	26.47	27.47	28.81	29.97	31.11	
	Half	Output	٧4		23.37	24,34	24.94	25.47	26.01	26.64	27.24	27.81	
Input	Voltage	Volts RMS		-	190	196	200	204	208	212	216	220	
	Time				0231	0237	0238	0238	0239	0240	0241	0242	

Neutron Exposure 1.0 (12) nvt Gamma Dose 3.95 (6) Rads

TABLE 4-35 CONTROL VOLTAGE SENSING S/N 11 PRE-TEST AT 160°F

	Differential	Output	7,6	009.	-1.834	-2.934	
Output de Volts	Half	Output	٧5	23.54	28.31	30.54	·
	Half	Output	74	24.14	26.47	27.61	
Input	9204	Syll of the Bake	VOIIS MWD	196	212	220	
	i.	ש ב		0154	0157	0201	·

TABLE 4-36 CONTROL VOLTAGE SENSING S/N 11 POST-TEST AT 160°F

i			Output de Volts	
Time	000	Half	Half	Differential
	agnio A	Output	Output	Output
	VOITS KMS	٧4	٧5	٧6
0231	190	23.40	21.94	1.467
0237	196	24.40	23.90	.500
0238	200	24.94	25.00	067
0238	204	25.51	26.17	667
0239	208	26.01	27.17	-1.167
0240	212	26.64	28.51	-1.867
0241	216	27.24	29.67	-2.434
0242	220	27.81	30.81	-3.001
	·			

TABLE 4–37 CONTROL VOLTAGE SENSING S/N 12 PRE-TEST AT 160°F

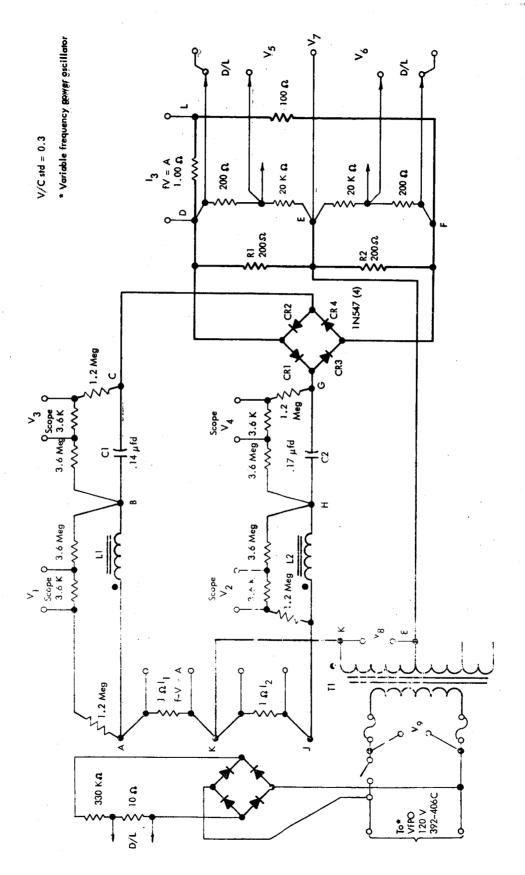
	Differential Output	.633	-1.834	-2.967
Output dc Volts	Half Output V5	23.50	28.81	30.54
	Half Output V4	24.14	26.47	27.57
Input	Voltage Volts RMS	196	212	222
	Time	0154	0157	0201

TABLE 4-36 CONTROL VOLTAGE SENSING S/N 12 POST-TEST AT 160°F

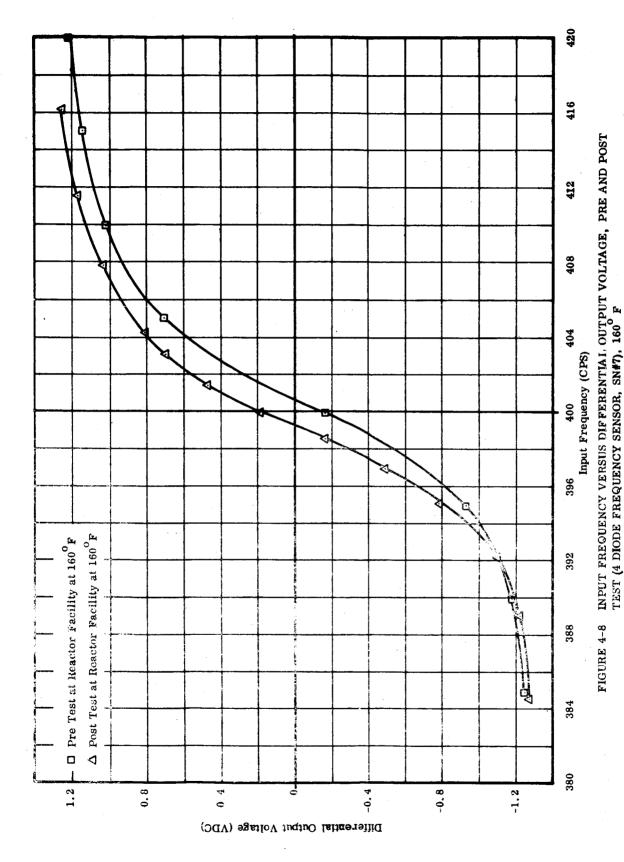
	Differential	Output	۸6	.467	067	667	-1.167	-1.934	-2.434	-3.067	
Output de Voits	Half	Output	٧5	 23.94	25.00	26.21	27.17	28.57	29.71	30.87	
	Half	Output	٧4	24.40	24.94	25.54	26.01	26.64	27.27	27.81	
Input	Voltage	26	VOITS IVAIS	196	200	204	208	212	216	220	
	Time			0237	0238	0238	0239	0240	0241	0242	

TABLE 4-39 TOTAL IRRADIATION DATA FOR VOLTAGE SENSING SUBASSEMBLIES

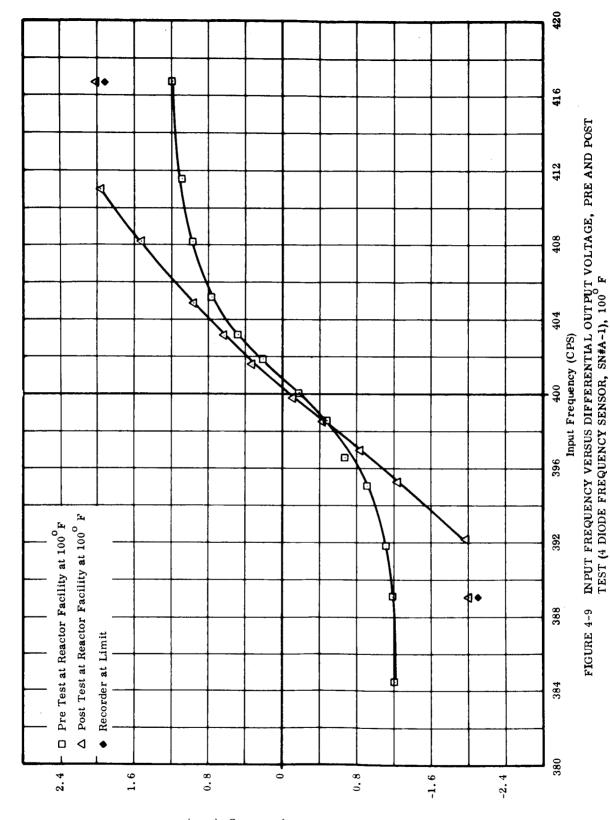
Serial Number	Neutron nvt × 10 ⁻³	Gamma Rads × 10
1	4.4	3.4
2	4.4	3.0
3	6.3	6.1
4	6.3	6.3
7	.075	2.13
8	.075	1.87
9	.10	3.8
10	.10	3.95


4.2 4 DIODE FREQUENCY SENSING

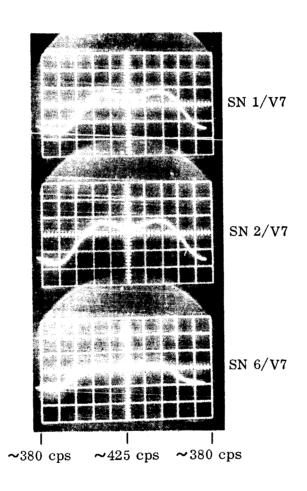
The output from the 4 Diode Frequency Sensing units shows a slight change at the end of the 160°F test run. The changes can be attributed to increased forward voltage drop of the 1N547 diodes. This particular circuit actually magnifies the effect due to radiation induced changes. The actual change in differential output is twice the change in the forward voltage drop. This effect can be seen in Figure 4–10. This oscillograph pictures shows the differential output vs. frequency. The frequency starts at 380 cps at the left, reached 425 cps at the center and is back to 380 cps at the right. The series resonance of both LC circuits may also serve as frequency references.


The data shows that the slope at null is not changed. There is, however, a shift in null frequency due to the difference in change of forward characteristics of individual diodes in the "ring".

Both tests showed similar changes at equivalent doses; therefore, the temperature difference of 60°F had no noticeable effect.

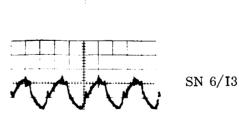

With the LiH shield removed for the last five hours of the 100°F test, the neutron dose caused gross changes in the diode characteristics. The output increased such that the limit of the recorder was exceeded at the extreme frequencies being monitored. Bench tests made after the irradiation confirmed that the general slope of the curve was unchanged. The data for these units are shown in Tables 4-40 thru 4-81. The differential output for a representative unit is shown in Figure 4-8 and 4-9.

4-54



4-55

Differential Output Voltage (VDC)


Date: 7/16/64 Time: 2240 Hours

Sweep Speed: .5 sec/cm Gain: 2 V/cm

FIGURE 4 - 10 4-DIODE FREQUENCY SENSING DIFFERENTIAL OUTPUT WITH SWEEP OSCILLATOR INPUT

Date: 7/17/64 Time: 1031 Ambient Temperature Input Frequency: 485.3 cps SN 1/V7 SN 2/V7 SN 6/V7 Sweep Speed: .2 m sec/cm 100 MV/cm Gain: SN 1/I3 SN 2/I3

Sweep Speed: 1 m sec/cm Gain: 10 MV/cm

FIGURE 4 - 11 SELECTED WAVE SHAPES FROM 4 DIODE FREQUENCY SENSING UNITS, POST-TEST

TABLE 4-40 FUNCTIONAL PRE-TEST AT LABORATORY 4 DIODE FREQUENCY SENSOR

	LioN			¹ 3 (MA) at Frequency (CPS)	uency (CPS)		
S,	(CPS)	410	417	422	387	392	397
A1	401.0	5.40	6.07	6.35	-6.24	-5.70	-3.30
A 2	401.0	5.30	6.10	6.40	-6.40	-6.10	-4.55
A3	401.0	5.35	6.20	6.45	-6.40	-5.90	-4.30
A4	401.0	5.50	6.20	6.45	-6.40	-5.90	-4.30
A5	401.7	5.20	6.10	6.40	-6.45	-6.10	-4.20
A6	400.8	5.40	6.10	6.40	-6.40	-6.00	-4.00
A7	401.4	5.30	6.10	6.40	-6.45	-6.15	-4.30
А8	401.4	5.30	6.10	6.40	-6.45	-6.00	-4.25
Α9	400.8	5.30	6.10	6.35	-6.40	-5.90	-3.75
A10	400.6	5.30	6.10	6.35	-6.35	-5.90	-4.00
A11	400.7	5.40	6.15	6.40	-6.45	-5.90	-3.80
A12	401.2	5.20	6.00	6.30	-6.45	-6.00	-4.10

TABLE 4-41 PRE AND POST DATA AT LABORATORY 4 DIODE FREQUENCY SENSORS

Pre-Test Mod	Pre-Test Model 092381-18 S/N Al	Al					
F1 (CPS)	401	410	417	422	387	392	397
V1 (VAC)	185	275	331	386	37.5	0.0	75.
	8 8	711	0.0/	4. (O# :	410	477
	504	791	346	3/4	4	103	172
V4 (VAC)	89	8	65	37	340	900	208
V5 (VDC)	0	0.541	0.607	0.633	-0.624	-0.568	-0.345
(VDC)	0	0.541	0.607	0.633	-0.625	-0.568	-0.345
V7 (VDC)	0	1.075	1.207	1.260	-1.240	-1.134	-0.680
-, (MA)	74	8	126	148	15.3	35.6	60.5
1, (MA)	74	42.4	27.0	17.1	140	126	87.0
√8 (VAC)	21.2	21.2	21.0	20.8	20.6	20.8	21.2
l ₃ (MA)	0	5.4	6.07	6.35	-6.24	-5.70	-3.30
Post-Test Moc	Post-Test Model 092381-18 S/N Al	l A l					
VI (VAC)	170	235	300	320	88	88	135
V2 (VAC)	168	110	63	43	280	264	506
V3 (VAC)	188	250	310	320	29	8	25.
	05.1	95	52	34.5	285	251	193
V5 (VDC)	0.0025	0.838	1.168	1.260	-1.310	-1.30	-0.548
V6 (VDC)	-0.0025	-0.842	-1.170	-1.270	1.320	1.130	0.549
V7 (VDC)	-0.0014	1.685	2.330	2.540	-2.590	-2.200	-1.080
-\ (MA)	65	88	01.0	81.	18.5	33	51
(MA)	65	43	25.8	æ :	118	8 2	82
VB (VAC)	20.88	20.8	20.5	20.3	20.3	20.5	20.7
13 (MA)	0	16.8	23.8	25.0	-26.0	21.5	-11.0
Post-Test Moc	Post-Test Model 092381-18 S/N	I Al with S/N Al	Diodes Substituted				
V1 (VAC)	185	260	330	38.	39	8/	139
V2 (VAC)	081	120	75	4	340	325	240
V3 (VAC)	202	275	340	370	\$	88	35.
	191	105	19	%	340	320	225
V5 (VDC)	0.002	0.497	0.591	0.617	-0.633	-0.593	-0.439
	-0.0024	-0.499	-0.597	-0.625	0.627	0.590	0.439
V7 (VDC)	0.005	0.993	1.194	1.244	-1.268	-1.1%	-0.887
(MA)	70.7	0.66	123		3.8	c.87	y 9
12 (MA)	- 0 %	. o. c.	20.8	18.9 5.05	1.39	13.1	0. %
	0 20:0	9.6	12.0	13.0	-12.8	-12.0	9.6
.3							

4-60

* Null frequency on post-test measurements was 402 CPS.

TABLE 4-42 4 DIODE FREQUENCY SENSING S/N 1 PRE-TEST AT 100°F

	Input		Output de Volts	
Time	Frequency	Half	Half	Differential
	CPS	Output	Output	Output
		٧5	9/	//
2150	425.4	.6161	6151	1.2312
2155	416.7	. 5838	-,5828	1.1666
2158	411.5	. 5333	5333	1.0666
2202	408.2	.4727	-,4697	. 9424
2205	404.9	.3535	-,3515	.7050
2209	387.4	.2412	2384	. 47%
2213	401.6		1050	.2161
2216	399.8	0898	6680*	-,1798
2220	398.2	2475	. 2424	-,4899
2222	396.8	-,35%	.3535	-,7131
2225	395.3	4434	.4373	8807
2227	392.2	5373	. 5353	-1.0726
2229	389.3	5787	.5797	-1.1584
2231	384.5	5999	0509.	-1.2049

TABLE 4-43 4 DIODE FREGEUNCY SENSING S/N 1, 100°F AT END OF LOW POWER RUN

Andreas de Company de la compa	Input		Output de Volts		
Time		Half	Half	Differential	
)	Frachency	Output	Output ·	Output	•
	CFS	٧5	9/	77	
2313	425.4	.6141	6110	1,2251	
2317	416.7	. 5828	5808	1.1636	
2320	411.7	. 5343	5303	1.0646	
2325	408,2	. 4737	4666	. 9403	
2329	405.0	.3666	3606	.7272	
2334	403.4	. 2808	2767	.5575	
2337	401.6	.1363	1323	. 2686	
2341	399.8	0394	.0434	0828	
2344	398.6	1767	.1737	3504	
2346	396.8	3262	.3232	6494	
2348	395.1	4192	.4161	8353	
2350	392.2	5252	.5272	-1.0524	
2352	389.1	5737	.5787	-1.1524	
2355	384.6	5949	. 5999	-1.1948	
				·	
e distinction of the second of	THE POINT AND THE PROPERTY OF				

Neutron Exposure 5..13 (11) nvt Gamma Dose 1.44 (6) Rads

4-62

																		 <u> </u>	
	Differential	Output	۸۷	1.3271	1.2625	1,1323	. 9949	.7413	.5413	.2989	1434	4192	7009	-,8989	-1.1372	-1.2715	-1.3181		
Output de Volts	Half	Output	7/8	-,6605	6292	5676	4929	3676	2676	1454	.0757	.2081	.3484	. 4474	.5767	.6403	.6636		
	Half	Output	٧5	9999.	.6333	.5747	. 5020	.3747	.2737	.1535	0677	11112	3525	4515	5605	6312	6545		
Input	Frequency	CPS		425.5	416.8	411.5	408.0	404.7	403.1	401.8	399.8	398.4	396.8	395.3	392.3	389.0	384.6		
	Time			1614	1617	1621	1625	1628	1631	1635	1639	1642	1645	1647	1656	1659	1701		

Neutron Exposure 1.2 (12) nvt Gamma Dose 3.4 (6) Rads

TABLE 4-45 4 DIODE FREQUENCY SENSING S/N 1 POST-TEST AT 100°F

	Input		Output de Volts	
<u> </u>		Half	Half	Differential
D = = = =	requency	Output	Output	Output
	CL2	٧5	//	٧٧
7000	700	7	000	72 0180
07.40	453.3	,00°1 /	600	2010.7
0830	416.7	>1.009	<-1.009	>2.0180
0934	411.5	6866*	9996	1.9655
0940	408.2	.7767	7191	1.4958
0946	404.9	.4919	4232	.9151
0951	403.2	.3484	-,3353	.6837
0955	401.6	.1778	1697	.3475
6560	400.0	1515	. 1919	3434
1003	398.4	2010	. 1959	3969
1019	396.8	3889	.3838	7727
1022	395.3	5828	.5706	-1,1534
1027	392.2	9393	. 9433	-1.8826
1031	389.1	<-1.009	> 1.009	<-2.0180
1035	384.6	<-1.009	> 1,009	<-2.0180
				1

Neutron Exposure 4.7 (13) nvt Gamma Dose 5.4 (6) Rads

TABLE 4-46 4 DIODE FREQUENCY SENSING S/N 2 PRE-TEST AT 100°F

	Input		Output de Volts	
; ;		Half	Half	Differential
ט E	Frequency	Output	Output	Output
	CPS	٧5	۸۸	٧٧
2150	425.4	.6131	-,6131	1.2262
2155	416.7	.5818	-,5797	1,1615
2158	411.5	. 5333	5313	1.0646
2202	408.2	.4777	-,4717	.9494
2205	404.9	.3626	3586	.7212
2209	403.1	.2586	-,2545	.5131
2213	401.6	.1333	1293	. 2626
2216	399.8	0616	9190.	1232
2220	398.2	2232	.2192	4424
2222	396.8	3434	.3353	-,6787
2225	395.3	4323	. 4262	8585
2227	392.2	5323	. 5303	-1.0624
2229	389.3	5828	.5818	-1.1646
2231	384.5	0609*-	.6121	-1.2211

TABLE 4-47 4 DIODE FREQUENCY SENSING S/N 2 AT END OF LOW POWER RUN

	Differential	Output V7	1.2453	1.1847	1.0848	. 9595	.7545	. 5929	.3151	.0263	3040	6242	8302	-1.0736	-1.1968	-1.2504		
Output de Volts	Half	Output V6	6211	5908	5414	4767	3747	2939	1555	.0182	.1515	.3101	.4131	.5373	6665.	.6272		
	Half	Output V5	.6242	. 5939	. 5434	.4828	.3798	.2990	.1596	0081	1525	3141	4171	5363	5969	6232		
Input	Frequency	CPS	425.4	416.7	411.7	408.2	405.0	403.4	401.6	399.8	398.6	396.8	395.1	392.2	389.1	384.6	 	
	Time		2313	2317	2320	2325	2329	2334	2337	2341	2344	2346	2348	2350	2352	2355		

Neutron Exposure 7.26 (11) Gamma Dose 1.77 (6)

TABLE 4-48 4 DIODE FREQUENCY SENSING S/N 2, 100°F, AT END OF TEST WITH LIH SHIELD

	Input		Output dc Volts	
Time	Frequency	Half	Half	Differential
	CPS	Output	Output	Output
		V5	۸۶	٧٧
1614	425.5	7040	- 4050	3000
1				
/191	416.8	9029.	-,6650	1.3356
1621	411.5	0809.	5989	1.2069
1625	408.0	. 5292	5212	1.0504
1628	404.7	. 4020	3939	.7959
1631	403.1	.3020	2939	. 5959
1635	401.8	. 1818	1737	.3555
1639	399.8	0367	.0414	0778
1642	398.4	1848	. 1838	3686
1645	396.8	3434	.3383	6817
1647	395.3	4565	.4525	0606-
1656	392.3	5898	. 6040	-1.1938
1659	389.0	6797	.6878	-1.3675
1701	384.6	7110	1917.	-1.4301

Neutron Exposure 1.7 (12) nvt Gamma Dose 4.2 (6) Rads

TABLE 4-49 4 DIODE FREQUENCY SENSING S/N 2, POST-TEST AT 100°F

Time	Input		Output de Volts	
		Half	Half	Differential
	riequency	Output	Output	Output
	CFS	٧5	9/	٧٧
0926	425.5	>1.009	600°1->	>2,0180
0630	416.7	>1.009	<-1.009	>2.0180
0934	411.5	.9413	9342	1.8755
0940	408.2	.7262	7080	1.4342
0946	404.9	.4606	4434	.9040
0951	403.2	.3313	3151	.6464
0955	401.6	.1778	1697	.3475
6560	400.0	. 2222	0152	.2374
1003	398.4	-,1616	.1576	3192
1019	396.8	3303	.3232	6535
1022	395.3	5050	. 4919	9969
1027	392.2	8585	.8565	-1.7150
1031	389.1	<-1,009	> 1.009	<-2.0180
1035	384.6	<-1.009	> 1.009	<-2.0180

Neutron Exposure 6.4 (13) nvt Gamma Dose 6.7 (6) Rads

TABLE 4-50 4 DIODE FREQUENCY SENSING S/N 3 PRE-TEST AT 100°F

	Input		Output dc Volts	
	Frequency	Half	Half	Differential
	(analysis)	Output	Output	Output
	5	٧5	9/	77
2151	425.4	.6211	6201	1.2412
2155	416.7	.5878	5868	1.1746
2158	411.5	. 5353	5353	1.0706
2202	408.2	.4747	4727	.9474
2206	404.9	.3545	3525	.7070
2209	387.4	.2424	2394	.4818
2213	401.6	.1121	1071	.2192
2217	399.8	0859	.0848	1707
2221	398.2	2404	.2363	4767
2223	396.8	3545	.3474	-,7019
2225	395,3	4383	. 4323	9028.
2227	392.2	5323	.5313	1.0636
2229	389.3	5787	.5787	1.1574
2231	384.5	6009*-	0909*	1.2069

TABLE 4-51 4 DIODE FREQUENCY SENSING S/N 3 AT END OF LOW POWER RUN

	Differential	Output	٧٧	1.2302	1.1636	1.0625	. 9343	.7171	. 5454	. 2586	0889	3656	7929-	9698	-1.1070	-1.2221	-1.2695		
Output de Volts	Half	Output	9/	6141	-, 5808	-,5292	4636	-,3555	2707	-,1273	.0455	. 1818	.3363	. 4333	.5545	.6131	.6383		
	Half	Output	٧5	1919.	.5828	. 5333	.4707	.3616	.2747	.1313	0434	1838	3404	4363	5525	0609	6312		
Input		requency	C _T S	425.4	416.4	411.7	408.2	405.0	403.4	401.6	399.8	398.6	396.8	395.1	392.2	389.1	384.6		
)		2313	2317	2321	2325	2329	2334	2337	2341	2344	2346	2349	2351	2353	2355		

Neutron Exposure 8.12 (11) nvt Gamma Dose 1.57 (6) Rads

TABLE 4-52 4 DIODE PREQUENCY SENSING S/N 3 AT END OF TEST WITH LIH SHIELD

	1																	 	
	Differential	Output	٧٧	1.3736	1.3009	1.1726	1.0120	.7504	.5413	.2959	1495	4384	7494	9767	-1.2645	-1.4291	-1.4887		
Output de Volts	Half	Output	۸6	6838	6484	5828	5020	3717	2666	1444	.0778	.2192	.3727	. 4858	.6393	.7181	.7484		
	Half	Output	. 75	8689.	.6525	.5898	.5100	.3787	. 2747	.1515	0717	2192	3767	-,4909	6252	7110	7403		
Input	Frequency	CPS		425.6	416.8	411.5	408.0	404.7	403.1	401.8	399.8	398.4	396.8	395.3	392.3	389.0	384.6		
	Time			1614	1618	1622	1625	1628	1632	1636	1639	1643	1645	1648	1657	1659	1702		

Neutron Exposure 1.9 (12) nvt Gamma Dose 3.7 (6) Rads

TABLE 4-53 4 DIODE FREQUENCY SENSING S/N 3 POST-TEST AT 100°F

	Input		Output de Volts	
• E		Half	Half	Differential
) - -	Frequency	Output	Output	Output
	S.	٧5 .	۸6	٧٧
0926	425.5	>1.009	<-1.009	>2.0180
0630	416.7	>1.009	<-1.009	>2.0180
0935	411.5	.9837	9827	1.9664
0940	408.2	.7686	7595	1.5281
0947	404.9	.4858	4727	.9585
0952	403.2	.3444	3333	.6777
9560	401.6	.1767	1707	.3474
1000	400.0	0131	.0182	0313
1003	398.4	1969	.1899	3868
1019	396.8	3838	.3757	7595
1022	395,3	5696	. 5595	-1.1291
1028	392.2	9231	.9241	-1.8472
1031	389.1	<-1.009	>1.009	<-2.0180
1035	384.6	<-1.009	>1.009	<-2.0180

Neutron Exposure 5.5 (13) nvt Gamma Dose 5.9 (6) Rads

TABLE 4-54 4 DIODE FREQUENCY SENSING S/N 4 PRE-TEST AT 100°F

	Input		Output de Volts	
	Freduon	Half	Half	Differential
	CPS	Output	Output	Output
		٧5	۸%	//
2151	425.4	.6161	1.6171	1.2332
2155	416.7	. 5848	5858	1.1706
2158	411.5	. 5363	5383	1.0746
2202	408.2	.4787	4797	.9584
2206	404.9	.3717	3697	.7414
2209	387.4	.2697	2666	. 5363
2213	401.6	.1454	1424	.2878
2217	399.8	-,0515	.0515	1030
2221	398.2	2182	.2141	-,4323
2223	396.8	3424	. 3353	6777
2225	395.3	4313	. 4262	8575
2227	392.2	5343	. 5333	-1.0676
2229	389.3	5797	. 5828	-1.1625
2231	384.5	6030	0209.	-1.2100

TABLE 4-55 4 DIODE FREQUENCY SENSING S/N 4 AT END OF LOW POWER RUN

	-		Chapter of Voits	
	indu		Carbon ac voits	
Time	Frequency	Half	Half	Differential
9	CPS	Output	Output	Output
		٧5	7/6	٧٧
2313	425.4	6669.	6929	1.3868
2317	416.7	. 6585	-,6575	1.3160
2321	411.7	.6030	5999	1.2029
2325	408.2	. 5343	5292	1.0365
2329	405.0	.4202	4161	.8363
2334	403.4	.3323	3282	. 6605
2337	401.6	.1828	1788	.3616
2341	399.8	.0212	0121	.0333
2344	398.6	1485	.1475	2960
2346	396.8	3282	.3252	6534
2349	395.1	4424	. 4404	8828
2351	392.2	-, 5828	. 5838	-1.1666
2353	389.1	6464	.6504	-1.2968
2355	384.6	-,6706	.6777	-1.3483

Neutron Exposure 1.07 (11) nvt Gamma Dose 1.23 (6) Rads

TABLE 4-56 4 DIODE FREQUENCY SENSING S/N 4 AT END OF TEST WITH LIH SHIELD

	Input		Output de Volts	
; ;		Half	Half	Differential
	Frequency	Output	Output	Output
	CPS	٧5	7/6	λ7
1614	425.5	9898.	8666	1.7362
1618	416.8	.8262	8252	1.6514
1622	411.5	.7413	7363	1.4776
1625	408.0	.6373	6302	1.2675
1628	404.7	.4717	4616	. 9333
1632	403.1	.3495	3373	8989.
1636	401.8	.2131	2020	.4151
1639	399.8	0141	.0242	0383
1643	398.4	1747	.1778	-,3525
1645	396.8	3606	3596	7202
1648	395.3	5070	. 5050	-1.0120
1657	392.3	7040	.7161	-1.1201
1659	389.0	8171	.8282	-1.6453
1702	384.6	8555	.8656	-1.7211

Neutron Exposure 2.5 (12) nvt Gamma Dose 2.9 (6) Rads

TABLE 4-57 4 DIODE FREQUENCY SENSING S/N 4 POST-TEST AT 100°F

	Input		Output de Voits	
a E	Frequency	Half	Half	Differential
)	CPS	Output	Output	Output
		٧5	۸۸	77
0926	425.5	> 1.009	60°1->	>2.0180
0830	416.7	> 1.009	<-1.009	>2.0180
0935	411.5	>1,009	<-1.009	>2.0180
0940	408.2	.7858	-,7767	1.5625
0947	404.9	. 5050	4929	6266.
0952	403.2	.3757	3636	.7393
9560	401.6	.2272	2171	. 4443
1000	400.0	.0768	0253	. 1021
1003	398.4	9494	. 9393	-1.8887
1019	396.8	2515	.2464	4979
1022	395.3	4080	3959	8039
1028	392.2	7181	.7110	-1,4291
1031	389.1	<-1 . 009	>1.009	<-2.0180
1035	384.6	<1.009	· 1.009	<-2.0180

Neutron Exposure 8.4 (13) nvt Gamma Dose 4.65 (6) Rads

4-76

TABLE 4-58 4 DIODE CONTROL FREQUENCY SENSING S/N 5 PRE-TEST AT 100°F

	Input		Output de Volts	
T.	Frequency	Half	Half	Differential
2	(a)	Output	Output	Output
		٧5	7,6	77
2151	425.4	.6161	0609*-	1.2251
2155	416.7	.5797	5727	1.1524
2159	411.5	. 5282	5191	1.0473
2202	408.2	.4595	4525	.9120
2206	404.9	.3282	3212	.6494
2209	387.4	.2050	1990	. 4040
2213	401.6	.0646	0576	.1222
2217	399.8	1353	.1323	2676
2221	398.2	2838	.2757	-,5595
2223	396.8	3878	.3767	7645
2225	395.3	4626	. 4535	9161
2228	392.2	-,5515	.5444	-1.0959
2230	389.3	5939	.5898	-1.1837
2232	384.5	6100	0809.	-1,2180
,				

TABLE 4-59 4 DIODE FREQUENCY SENSING S/N 5 POST-TEST AT 100°F

Input		Output de Volts	
Frequency	Half	Half	Differential
CPS	Output	Output	Output
	٧5	7,6	77
425.5	.6246	6171	1.2413
416.7	. 5888	-, 5808	1.1696
411.5	. 5353	5292	1.0645
 408.2	.4707	4626	. 9333
404.9	.3444	-,3353	.6797
403.2	.2464	-,2384	. 4848
401.6	0660.	0939	. 1929
400.0	0949	. 0949	-,1898
398.4	2555	.2475	5030
 396.8	3707	.3636	7343
 395.3	-,4535	. 4444	8979
 392.2	5504	. 5434	-1.0938
 389.1	5989	. 5949	-1.1938
384.6	6151	.6131	-1.2282

TABLE 4-60 4 DIODE CONTROL FREQUENCY SENSING S/N 6 PRE-TEST AT 100°F

	Input		Output de Voits	
		Half	Half	Differential
V	rrequency	Output	Output	Output
	CPS	٧5	7/6	٧٧
2151	425.4	.6121	6110	1,2231
2155	416.7	.5818	5808	1,1626
2159	411.5	. 5353	-, 5333	1.0686
2202	408.2	.4808	4767	.9575
2206	404.9	.3727	3697	.7424
2209	387.4	.2737	2697	.5424
2213	401.6	.1525	1495	.3020
2217	399.8	0424	.0455	0879
2221	398.2	2131	.2081	4212
2223	396.8	3404	. 3333	6737
2225	395.3	4333	.4262	8595
2228	392.2	5393	. 5353	-1.0746
2230	389.3	5868	. 5868	-1.1736
2232	384.5	0.409	0609.	-1.2160

TABLE 4-61 CONTROL 4 DIODE FREQUENCY SENSING S/N 6 POST-TEST AT 100°F

				·															
	Differential	Output	/7	1.2362	1.1776	1,0857	.9736	.7646	. 6050	.3545	.0646	-,3585	6403	8363	-1.0716	-1.1806	-1.2211		
Output ac voits	Half	Output	7,6	6181	5878	-,5403	-, 4848	-,3798	3000	1747	0505	.1767	.3171	.4141	. 5333	. 5908	.6121		
	Half	Output	٧5	.6181	.5898	. 5454	.4888	.3848	.3050	.1798	.1041	1818	3232	4222	5383	-, 5898	0609*-		
Input	Frequency	(m. bd.)		425.5	416.7	411.5	408.2	404.9	403.2	401.6	400.0	398.4	396.8	395.3	392.2	389.1	384.6		
		υ Ε -		0926	0931	0935	0940	0947	0952	9560	1000	1004	1020	1023	1028	1032	1035		

TABLE 4-62 4 DIODE FREQUENCY SENSING S/N 7 PRE-TEST AT 160°F

	Input		Output de Volts	•
Tine	Frequency	Half	Half	Differential
	/amaha	Output	Output	Output
	5	٧5	۸۶	۸۷
	4.04			
1458	392.0	5030	. 5040	-1.0070
1500	397.9	2575	.2575	5140
1501	40%.0	.3929	-,3858	.7787
1907	394.9	4222	4171	8393
1910	400.0	2020	.0252	4545
1912	401.9	.2212	2151	. 4363
1914	405.0	.3767	3697	.7464
1916	410.0	. 4929	4868	2626

TABLE 4-63 4 DIODE FREQUENCY SENSING S/N 7 AT END OF LOW POWER RUN

	Input		Output de Voits	1
Time	Frequency	Half	Half	Differential
)	\\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\	Output	Output	Output
	5	٧5	9/	//
1052	425.5	6665.	5999	1,1998
1056	416.5	.5747	5737	1.1484
1059	411.5	. 5333	5303	1.0636
1103	404.7	.3959	3909	. 7868
1107	400.8	9091.	-,1555	.3161
	395.9	3222	.3181	6403
115	392.2	5100	.5070	-1.0170
1118	386.1	-,5797	.5818	-1.1615

Neutron Exposure 5.56 (11) nvt Gamma Dose 1.55 (6) Rads

TABLE 4-64 4 DIODE FREQUENCY SENSING S/N 7 POST-TEST AT 160°F

	Input		Output dc Volts	
Time	Frequency	Half	Half	Differential
	CPS	Output	Output	Output
		٧5	76	۸۷
673	416.1			
0045	410.1	.6343	6282	1.2625
0046	411.5	.5898	-,5818	1.1716
0048	AC7.8	.5222	5151	1.0373
0049	404.2	.4111	4010	.8121
1500	403.1	.3565	3454	.7019
0055	401.4	.2404	2303	.4707
0103	400.0	.1060	0929	. 1989
90104	398.6	0747	. 0828	-,1575
0105	397.0	2454	. 2454	4908
0107	395.1	3909	.3899	-,7808
6010	392.2	5474	.5484	-1.0958
0110	389.1	6121	.6151	-1.2272
0112	384.6	6333	.6393	-1.2726

Neutron Exposure 1.2 (12) nvt Gamma Dose 3.4 (6) Rads

TABLE 4-65 4 DIODE FREQUENCY SENSING S/N 8 PRE-TEST AT 160°F

			 								<u> </u>
	Differential	V7	9766	5130	.7686	8160	0677	.4100	.7322	99.66	
Output de Volts	Holf	, od po 8/	.4898	.2565	-,3828	.4070	.0354	2030	-,3656	4878	
	Half	V5	4868	2565	.3858	4090	0323	.2070	.3666	. 4888	
Input	Frequency	CPS	392.0	397.9	406.0	394.9	400.0	401.9	405.0	410.0	
	Time		1458	1500	1501	1907	1910	1912	1914	1916	

TABLE 4-66 4 DIODE FREQUENCY SENSING S/N 8 AT END OF LOW POWER RUN

Neutron Exposure 7.88 (11) nvt Gamma Dose 1.90 (6) Rads

TABLE 4-67 4 DIODE FREQUENCY SENSING S/N 8 POST-TEST AT 160°F

	Input		Output de Volts	
\$ E		Half	Half	Differential
V	CPS	Output V5	Output V6	Output V7
0043	416.1	.6383	-,6393	1.2776
0046	411.5	. 5898	-, 5898	1.17%
0048	407.8	.5191	5161	1.0352
0049	404.2	.4010	3939	.7949
1500	403.1	.3434	3363	.6797
0055	401.4	.2242	2171	.4413
0103	400.0	6680.	8080	.1707
0104	398.6	0919	0960	1879
0105	397.0	2575	. 2575	5150
0107	395.1	4030	. 4030	8060
6010	392.2	5595	.5616	-1.1211
0110	389.1	6403	. 6454	-1.2857
0112	384.6	6747	. 6848	-1,3595

Neutron Exposure 1.7 (12) nvt Gamma Dose 4.16 (6) Rads

TABLE 4-68 4 DIODE FREQUENCY SENSING S/N 9 PRE-TEST AT 160°F

	Input		Output dc Volts	
		Half	Half	Differential
Time	rrequency	C	Output	Output
	5	V5 V5	. 9/	٧7 .
1458	392.0	4747	.4737	9484
1500	397.9	2081	.2070	4151
1502	406.0	.4030	3969	.7999
1908	394.9	3818	.3787	7605
0161	400.0	.0475	0414	6880*
1912	401.9	.2505	2444	.4949
1914	405.0	.3848	3808	.7656
1917	410.0	.4989	4868	9926.

TABLE 4-69 4 DIODE FREQUENCY SENSING S/N 9 AT END OF LOW POWER RUN

Time Frequency Half Half CPS Output Output 1053 425.5 .6201 6191 1056 416.5 .5929 5929 1100 411.5 .5494 5474 1103 404.7 .4141 4121 1108 400.8 .1959 1919 1111 395.9 2848 .2808 1115 386.1 4939 .4898 1119 386.1 5949 .5969				Output dc Voits	
CPS V5	1	Freedom	Half	Half	Differential
425.5 6201 416.5 5929 411.5 5494 404.7 4141 400.8 1959 395.9 2848 392.2 4939 386.1 5949)	Supplied to the supplied to th	Output	Output	Output
425.5 6201 416.5 5929 411.5 5494 404.7 4141 400.8 1959 395.9 2848 392.2 4939 386.1 5949		S	٧5	9/	^/
416.5	53	425 5	4201	- 6191	1, 2392
411.55494 404.74141 400.81959 395.92848 392.24939 386.15949	26	416.5	. 5929	-, 5929	1,1858
400.8 .1959 395.92848 392.24939 386.15949	8	411.5	.5494	5474	1.0968
400.8 .1959 395.92848 392.24939 386.15949	103	404.7	.4141	4121	.8262
395.92848 392.24939 386.15949	80	400.8	.1959	-,1919	.3878
392.24939 386.15949	Ξ	395.9	2848	. 2808	5656
386.15949	115	392.2	4939	.4898	9837
	911	386.1	5949	. 5969	-1.1918
				-	

Neutron Exposure 8.81 (11) nvt Gamma Dose 1.96 (6) Rads

4-88

TABLE 4-70 4 DIODE FREQUENCY SENSING S/N 9 FOST-TEST AT 160°F

T (
Output V5

Neutron Exposure 1.9 (12) nut Gamma Dose 3.7 (6) Rads

TABLE 4-71 4 DIODE FREQUENCY SENSING S/N 10 PRE-TEST AT 160°F

	Input		Output de Volts	
Time	2000	Half	Half	Differential
,		Output	Output	Output
	CPS	٧5	9/	77
1458	392.0	4686	. 4666	9352
1500	397.9	1909	. 1889	3798
1502	406.0	. 4060	4030	0608.
1908	394.9	3727	.3676	7403
1910	400.0	.6565	0616	.7181
1912	401.9	. 2606	2575	.5181
1914	405.0	3909	3889	.7798
1917	410.0	.4919	4898	.9817

TABLE 4-72 4 DIODE FREQUENCY SENSING S/N 10 AT END OF LOW POWER RUN

				 								
	Differential	Output	٧7	1.3302	1.2756	1.1776	. 8888	. 4302	5595	-1,0191	-1.2696	
Outpoling Vorts	Holi	Output	9/	6656	6383	5888	4434	2131	.2767	.5070	.6353	
	Haĺi	Output	٧5	.6646	.6373	. 5888	. 4454	.2171	2828	5121	6343	
Induj	Frequency	(m. sho.))	425.5	416.5	411.5	404.7	400.8	395.9	392.2	386.1	
	Time)		1053	1056	1100	1103	1108		1115	1119	

Neutron Exposure 1.16 (12) nut Gamma Dose 1.32 (6) Rads

TABLE 4-73 4 DIODE FREQUENCY SENSING S/N 10 POST-TEST AT 160°F

					1
	Input		Output de Volts		
Time	Frequency	Half	Half	Differential	
	CPS	Output	Output	Output	
		٧5	9/	//	
0044	416.1	.8019	-*8009	1.6028	
0046	411.5	.7383	-,7363	1.4746	
0048	407.8	.6484	6444	1.2928	
0020	404.2	.5080	5020	1.0100	
0051	403.1	.4434	-,4353	.8787	
0055	401.4	.3151	-,3060	.6211	
0103	400.0	.1778	1677	.2455	
0104	398.6	.010	.0111	.0212	
9010	397.0	1899	.1909	3808	
0107	395.1	3777	.3737	7514	
6010	392.2	6040	.6020	-1.2060	
1110	389.1	7383	.7413	-1.4796	
0112	384.6	7959	6008	-1.5968	

Neutron Exposure 2.5 (12) nvt Gamma Dose 2.9 (6) Rads

TABLE 4-74 CONTROL 4 DIODE FREQUENCY SENSING S/N 11 PRE-TEST AT 160°F

\$	Differential Output	>	-1.0756	5818	.8271	9272	1374	.4009	.7737	1.0524	
Output de Volts	Half Output	9/	. 5373	. 2899	4090	.4616	7690.	1969	3828	5232	
	Half Output	5	5383	2919	.4181	4656	0677	.2040	3909	.5292	
Input	Frequency CPS		392.0	397.9	406.0	394.9	400.0	401.9	405.0	410.0	
	Time		1459	1500	1502	1908	11611	1913	1914	1917	

TABLE 4-75 CONTROL 4 DIODE FREQUENCY SENSING S/N 11 POST-TEST AT 160°F

	Differential	Output	٧٧	1.0938	1.0292	.9313	.7615	.6777	.4909	.2605	0707	3938	6716	9494	-1.0858	-1.1393		
Output de Volts	Half	Output	9/	5434	5111	4616	- ,3757	3343	2414	1262	.0384	. 1969	.3343	. 4737	. 5444	.5717		
	Half	Output	٧5	. 5504	.5181	.4697	.3858	.3434	. 2495	.1343	0323	1969	3373	4757	5414	5676		
Input	Frequency	CPS		416.1	411.5	407.8	404.2	403.1	401.4	400.0	398.6	397.0	395.1	392.2	389.1	384.6		
	Time			0045	0047	0048	0020	0052	9200	0103	0105	9010	0108	0109	0111	0112		

TABLE 4-76 CONTROL 4 DIODE FREQUENCY SENSING S/N 12 PRE-TEST AT 160°F

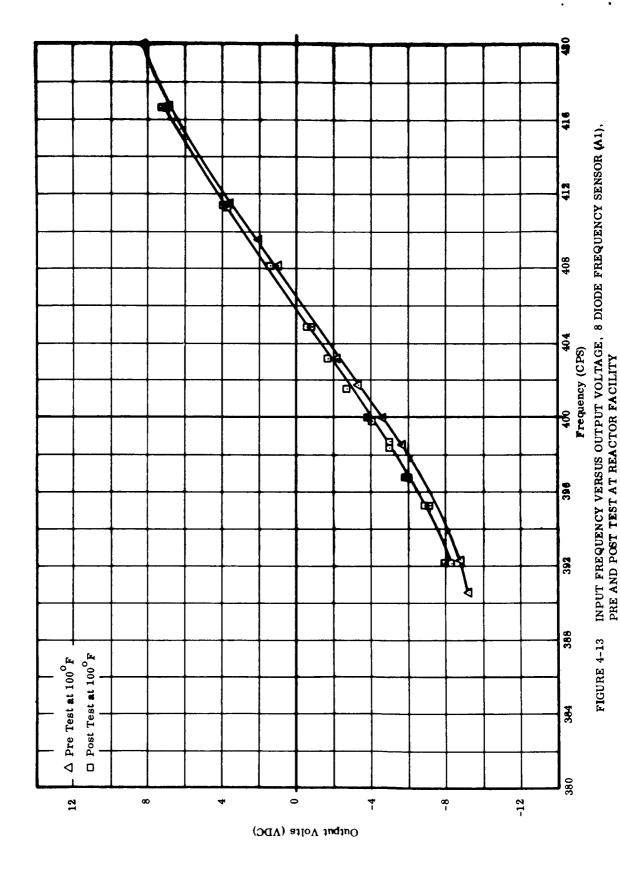
Time				
):::•	Frequency	Half	Half	Differential
		Output	Output	Output
	25	٧5	9/	٧٧
1459	392.0	5474	.5454	-1.0928
1500	397.9	3272	.3202	6474
1502	406.0	.3889	3838	.7727
1908	394.9	4797	.4737	9534
1911	400.0	1192	.1172	2364
1913	401.9	.1555	1505	30%0
1914	405.0	.3596	3545	.7141
1917	410.0	.5121	5080	1.0201

TABLE 4-77 CONTROL 4 DIODE FREQUENCY SENSING S/N 12 POST-TEST AT 160°F

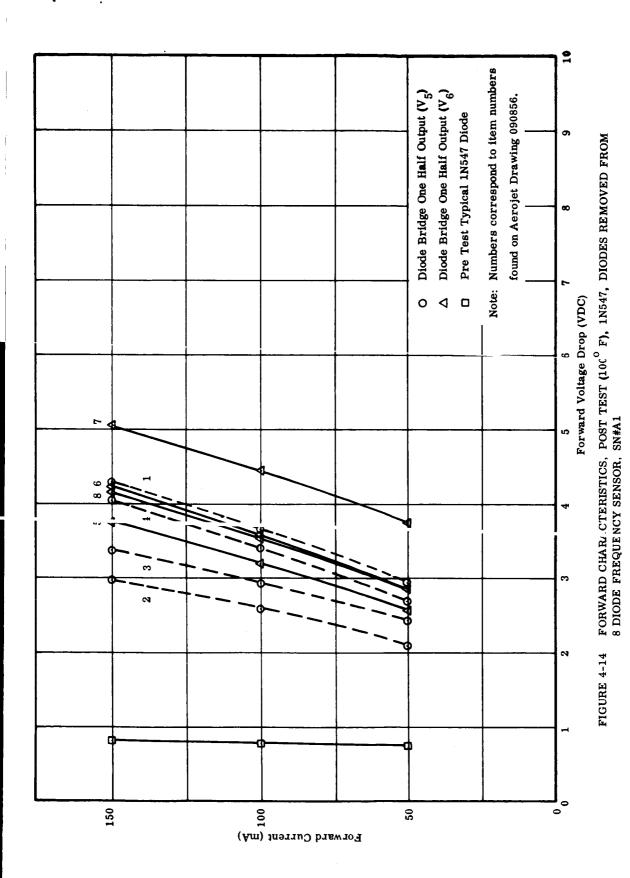
	Input		Output de Volts	
Ţ	1	Half	Half	Differential
2	Frequency	Output	Output	Output
	CPS	٧5	9/	۸۷
0045	416.1	. 5393	-, 5353	1.0746
0047	411.5	. 5050	-,4989	1.0039
0048	407.8	.4515	4464	.8979
0020	404.2	.3565	-,3515	. 7080
0052	403.1	.3091	3030	.6121
9500	401.4	. 2060	2000	.4060
0103	400.0	.0828	0758	.1586
0105	398.6	6060*-	.0919	1828
9010	397.0	2414	.2384	4798
0108	395.1	3646	.3606	7252
0109	392.2	4878	. 4848	9726
0111	389.1	5494	. 5494	-1.0988
0112	384.6	5757	.5787	-1.1544

TABLE 4-78 TOTAL IRRADIATION DATA FOR 4 DIODE FREQUENCY SENSING SUBASSEMBLIES

Serial Number	Neutron nvt × 10 ⁻¹³	Gamma Rads × 10
1	4.7	5.4
2	6.4	6.74
3	5.5	5.9
4	8.4	4.65
7	.12	3.4
8	.17	4.16
9	.19	3.7
10	.25	2.9

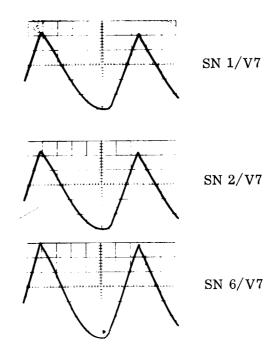

4.3 8 DIODE FREQUENCY SENSING

The change in the 8 Diode Frequency Sensing Circuits was not appreciable at the end of the 160°F test and at an equivalent dose on the 100°F test. The circuit configuration makes the output less dependent on the diode forward characteristics. Figure 4-13 shows that a null shift of approximately 1 cps occurred on 8D #1 at the conclusion of the 100°F test.


Figure 4-14 shows the bench data on the forward voltage drop of the diodes removed from 8D #1 after the test. The relatively lower voltage drops of the diodes from one bridge, dashed curves on figure, will account for the null shift.

The data Tables 4-82 thru 4-117 show that the voltage from each half did show a minor change due to radiation. The post bench data Table 4-84 shows that normal operation was restored when unirradiated diodes from 8D-12 were installed. The new null compares well with the pre-test null of 8D-12. The oscillograph picture in Figure 4-15 shows the output ripple voltage near null. A peak to peak difference of approximately one half volt may be noted. The direct current change is generally lower.

FIGURE 4 - 12 8 DIODE FREQUENCY SENSING



4-100

4-101

Date: 7/17/64
Time: 1100 Hours

Sweep Speed: .2 m sec/cm

Gain: 5 V/cm

FIGURE 4 - 15 OUTPUT VOLTAGE OF TWO IRRADIATED AND ONE CONTROL 8 DIODE FREQUENCY SENSING SUB-ASSEMBLIES

TABLE 4-79 FUNCTIONAL PRE-TEST AT LABORATORY 8 DIODE FREQUENCY SENSOR

	IIo Z			13 (MA) at Frequency (CPS)	ency (CPS)		
Z S	Frequency	412	420	427	387	392	400
Ā	406	7.0	16.0	19.8	-21.0	-18.2	-9.2
A2	406	6.8	15.2	19.6	-19.8	-16.6	-7.2
А3	40%	7.2	15.2	20.0	-20.4	-17.0	-7.4
A4	407	5.6	13.8	19.2	-20.4	-18.6	-9.2
A5	40%	6.2	14.4	19.2	-20.6	-17.6	-8.2
A6	406	9.9	14.8	20.6	-20.6	-16.4	9.9-
A7	40%	8.9	14.6	19.4	-20.0	-17.0	-7.0
Α8	406	9.9	14.8	19.8	-20.0	-17.0	-7.4
A9	406	8.9	14.2	19.6	-19.	-17.6	-6.4
A10	406	6.6	14.8	19.4	-19.8	-17.2	-7.4
N N	406	9.9	14.6	19.4	-20.0	-17.2	-7.2
A12	406	0.9	14.4	19.4	-19.6	-17.0	-8.0

TABLE 4-80 POST-TEST DATA AT LABORATORY 8 DIODE FREQUENCY SENSOR S/N A-1

9	303	280	231	260	15.54	18.62	-3.04	36.2	35.7	120	8	011	-5.0
392	160	330	188	320	13.99	21.10	-7.10	36.5	35.8	120	99	130	-12.0
387	139	335	168	335	13.03	21.63	-8.61	36.1	35.5	120	27	13%	-14.4
427	380	155	380	126	22.23	13.12	9.12	35.6	38.0	120	140	25	15.2
420	350	179	3%0	150	21.28	14.14	7.13	35.9	38.0	120	133	65	12.0
412	290	211	315	184	18.84	15.44	3.37	38.0	35.9	120		84	5.6
Noll 404	240	249	266	224	16.79	16.76	0.0	36.1	35.9	120	95	94	0.0
F ₁ (Frequency) CPS	V1 (VAC)	V2 (VAC)	V3 (VAC)	V4 (VAC)	V5 (VDC)	V6 (VDC)	V7 (VDC)	V8 (VAC)	V9 (VAC)	V10 (VAC)	I, (MA AC)	I, (MA AC)	1 ₃ (MA DC)

TABLE 4-81 POST-TEST DATA AT LABORATORY 8 DIODE FREQUENCY SENSOR S/N AT WITH A12 DIODES SUBSTITUTED

	T												
6	215	330	241	310	17.21	21.60	-4.36	36.2	35.6	120	88	12%	-7.2
392	162	395	194	385	15.47	25.36	-9.90	36.5	35.5	120	69	160	-16.6
387	142	405	171	407	14.44	25.95	-11.48	38.1	35.5	120	59	165	-19.2
427	445	173	445	142	25.93	14.61	11.28	35.5	36.0	120	165	09	-18.8
420	3%0	202	405	171	24.39	15.84	8.12	35.9	38.0	120	051	73	-13.6
412	340	239	32	210	21.04	17.30	3.70	36.0	35.9	120	125	89	-6.10
Null 406	264	279	300	250	18.94	18.93	0.0	36.1	35.9	120	105	105	0.0
F ₁ (Frequency) CPS	V1 (VAC)	V2 (VAC)	V3 (VAC)	V4 (VAC)	V5 (VDC)	V6 (VDC)	V7 (VDC)	V8 (VAC)	V9 (VAC)	V10 (VAC)	I (MA AC)	I ₂ (MA AC)	I ₃ (MA DC)

TABLE 4-82 8 DIODE FREQUENCY SENSING S/N 1 PRE-TEST AT 100°F

	Input		Output de Volts	
	L	Half	Half	Differential
e E	Frequency	Output	Output	Output
	CLS	٧5	۸6	//
2151	425.4	25,31	14.30	11.00
2156	416.7	22.70	15,95	6.75
2159	411.5	20.55	17.25	3.30
2203	408.2	19,40	18.30	1.10
2206	404.9	18.35	19.35	-1.00
2210	387.4	17.85	19.85	-2.00
2214	401.6	17.45	20.85	-3.40
2218	399.8	17.15	21.40	-4.25
2221	398.2	16.75	22.15	-5.40
2224	396.8	16.60	23.00	640
2226	395.3	16.30	23.60	-7.30
2228	392.2	15.75	24.40	-8.65
2230	389.3	15.05	25.60	-10.00
2232	384.5	14.40	25.00	-10.60
		at		

TABLE 4-83 8 DIODE FREQUENCY SENSING S/N 1 AT END OF LOW POWER RUN

	Input		Output de Volts	
Time	i i	Half	Half	Differential
0	rrequency	Output	Output	Output
	S	٧5	۸6	٧٧
2314	425.4	25.36	14.20	11.15
2318	416.7	23.20	16.25	96-99
2321	411.7	20.95	17.15	3.80
2326	408.2	19.70	18.30	1.40
2330	405.0	18.55	19.20	-,65
2335	403.4	18.10	19.60	-1.50
2338	401.6	17.65	20.65	-3.00
2342	399.8	17.30	21.15	-3.85
2345	398.6	17.00	21.75	-4.75
2347	396.8	16.70	22.60	-5.90
2349	395.1	16.35	23,15	-6.80
2351	392.2	16.10	24.45	-8.35
2353	389.1	15.60	24.75	-9.15
2356	384.6	14.65	25.00	-10.35
				:

Neutron Exposure 5.13 (11) nvt Gamma Dose 1.67 (6) Rads

TABLE 4-84 8 DIODE FREQUENCY SENSING S/N 1 AT END OF TEST WITH LIH SHIELD

	Input		Output de Voits	
Ţ	L	Half	Half	Differential
	Frequency	Output	Output	Output
	CPS	٧5	۸6	٧٧
1615	425.5	25.11	14.10	11.00
1619	416.8	22.85	15.75	7.10
1622	411.5	20.75	17.15	3.60
1626	408.0	19.45	18.30	1.15
1629	404.7	18.30	19.10	- 80
1633	403.1	17.90	19.60	-1.70
1636	401.8	17.60	20.35	-2.75
1640	399.8	17.15	21.20	-4.05
1643	398.4	16.90	21.75	-4.85
1646	396.8	16.60	22.55	-5.95
1648	395.3	16.30	23.05	-6.75
1657	392.3	15.90	24.20	-8.30
1700	389.0	15.60	25.00	-9.40
1702	384.6	14.45	24.65	-10.20

Neutron Exposure 1.2 (12) nvt Gamma Dose 3.95 (6) Rads

4-108

Input		Output de Volts	
7	Half	Half	Differential
(allegher)	Output	Output	Output
CF3	٧5	9/	//
405 S	21	07 61	c c
	-	2.00	08.80
416.7	20.05	14.05	6.00
411.5	18.50	14.95	3.55
408.2	17.55	15.75	1.80
404.9	16.55	16.40	.15
403.2	16.25	16.65	40
401.6	15.95	17.25	-1.30
400.0	15.70	17.65	-1.95
398.4	15.30	18,15	-2.85
396.8	15.00	18.60	-3.60
395.3	14.75	19.00	-4.25
392.2	14.25	19.60	-5,35
389.1	13.85	20.15	-6.30
384.6	13.05	20.40	-7.35

Neutron Exposure 7.0 (13) r Gamma Dose 6.3 (6) Ra

TABLE 4-86 8 DIODE FREQUENCY SENSING S/N 5 PRE-TEST AT 100°F

T:ae	Input			
• E -	ı	Half	Half	Differential
	Frequency	Output	Output	Output
	CPS	٧5	. 9/	7.7
2151	425.4	25.76	14.30	11,46
2156	416.7	22.90	16.00	06.90
2159	411.5	21.00	17.25	3,75
2203	408.2	19.80	18.20	1.60
2206	404.9	18.60	19.45	85
2210	387.4	18.10	19.90	-1.80
2214	401.6	17.75	20.65	-2.90
2218	399.8	17,35	21.55	-4.20
2221	398.2	17.00	22.25	-5.25
2224	396.8	16.85	23.15	-6.30
2226	395.3	16.55	23.75	-7.20
2248	392.2	16.05	24.45	-8.40
2230	389.3	15.70	24.75	-9.05
2232	384.5	14.60	25.06	-10.46

TABLE 4-87 8 DIODE FREQUENCY SENSING S/N 5 AT END OF LOW POWER RUN

Time GPS Output Output CPS V5 V6 V5 V6		Input	Vertical and the second	Output as Volts	
CPS V5 425.4 25.76 416.7 23.50 411.7 21.30 408.2 20.10 405.0 18.80 403.4 18.35 401.6 17.95 399.8 17.50 396.8 16.85 395.1 16.60 389.1 15.75 384.6 14.85		7.00 E	Half	Half	Differential
425.4 25.76 416.7 23.50 411.7 21.30 408.2 20.10 408.2 20.10 403.4 18.35 401.6 17.95 399.8 17.50 396.8 16.85 395.1 16.80 395.2 16.40 389.1 15.75 384.6 14.85	<u> </u>	380	Output	Output	Output
425.4 25.76 416.7 23.50 411.7 21.30 408.2 20.10 405.0 18.80 403.4 18.35 401.6 17.95 399.8 17.50 396.8 17.50 395.1 16.60 389.1 15.75 384.6 14.85		C C	٧5	7/8	
416.7 23.50 411.7 21.30 408.2 20.10 405.0 18.80 403.4 18.35 401.6 17.95 399.8 17.50 396.6 17.25 396.8 16.60 395.1 16.40 389.1 15.75 384.6 14.85	2314	425.4	25.76	14.25	11.5
411.7 21.30 408.2 20.10 405.0 18.80 403.4 18.35 401.6 17.95 399.8 17.50 396.8 16.85 395.1 16.60 389.1 15.75 384.6 14.85	2318	416.7	23.50	16.25	7.25
408.2 20.10 405.0 18.80 403.4 18.35 401.6 17.95 399.8 17.50 396.8 17.25 395.1 16.60 392.2 16.40 389.1 15.75 384.6 14.85	2321	411.7	21.30	17.15	4.15
405.0 18.80 403.4 18.35 401.6 17.95 399.8 17.50 396.8 17.25 396.8 16.85 395.1 16.40 389.1 15.75 384.6 14.85	2326	408.2	20.10	18.30	1.80
403.4 18.35 401.6 17.95 399.8 17.50 396.8 17.25 396.1 16.85 395.1 16.60 392.2 16.40 389.1 15.75 384.6 14.85	2330	405.0	18.80	19.05	25
401.6 17.95 399.8 17.50 398.6 17.25 396.8 16.85 395.1 16.60 392.2 16.40 389.1 15.75 384.6 14.85	2335	403.4	18.35	19.70	-1.35
399.8 17.50 398.6 17.25 396.8 16.85 395.1 16.60 382.2 16.40 389.1 15.75 384.6 14.85	2338	401.6	17.95	20.70	-2.75
398.6 17.25 396.8 16.85 395.1 16.60 392.2 16.40 389.1 15.75 384.6 14.85	2342	399.8	17.50	21.30	-3.80
396.8 16.85 395.1 16.60 392.2 16.40 389.1 15.75 384.6 14.85	2345	398.6	17.25	21.95	-4.70
395.1 16.60 392.2 16.40 389.1 15.75 384.6 14.85	2347	396.8	16.85	22.65	-5.80
392.2 16.40 389.1 15.75 384.6 14.85	2349	395.1	16.60	23.30	-6.70
389.1 15.75 384.6 14.85	2351	392.2	16.40	24.60	-8.20
384.6 14.85	2353	389.1	15.75	25.06	-9.31
	2356	384.6	14.85	25.11	-10.26

Neutron Exposure 4.14 (11) nv Gamma Dose 1.61 (6) Rac

TABLE 4-88 8 DIODE FREQUENCY SENSING S/N 5 AT END OF TEST WITH LIH SHIELD

	Input		Output de Volts	
Ě		Half	Half	Differential
	CPS	Output V5	Output V6	Output V7
1615	425.5	25.66	14.10	11.56
1619	416.8	23.05	15.80	7.25
1622	411.5	21,25	17.10	4.15
1626	408.0	19.90	18.25	1.65
1629	404.7	18.70	19.00	30
1633	403.1	18.20	19.65	-1.45
1636	401.8	17.85	20.25	-2.40
1640	399.8	17.45	21.25	-3.80
1643	398.4	17.10	21.85	-4.75
1646	396.8	16.90	22.70	-5.80
1648	395.3	16.55	23.20	-6.65
1657	392.3	16.25	24.30	-8.65
1700	389.0	15,40	24.70	-9.30
1702	384.6	14.70	24.70	-10.00

Neutron Exposure 9.7 (11) nvt Gamma Dose 3.8 (6) Rads

TABLE 4-89 8 DIODE FREQUENCY SENSING S/N 5 POST-TEST AT 100°F

	Lipot		Output de Volts	
ine.	Frequency	Half	Half	Differential
	() () () () () ()	Output	Output	Output
	5	٧5	7,6	٧٧
0927	425.5	21.95	12,75	9,20
0931	416.7	20.45	14.30	6.15
0935	411.5	19.00	15.30	3.70
0941	408.2	17.95	16.00	1.95
0948	404.9	16.95	16.80	.15
0953	403.2	16.60	17.10	50
9560	401.6	16.40	17.65	-1.25
1000	400.0	15.85	18.20	-2.35
1004	398.4	15.60	18.70	-3.10
1020	396.8	15,35	19.20	-3.85
1023	395.3	15.10	19.60	-4.50
1029	392.2	14.60	20.35	-5,75
1032	389.1	14.00	20.75	-6.75
1036	384.6	13.40	21.05	-7.65

Neutron Exposure 6.6 (13) nvt Gamma Dose 6.1 (6) Rads

TABLE 4-90 8 DIODE FREQUENCY SENSING S/N 11 PRE-TEST AT 100°F

		Differential	Output	γ7	11.10	9.30	3.50	1.40	70	-1.95	-3.00	-4.25	-5.45	-6.40	-7.25	-8.55	-9.10	-10.55	 	
Output dc Volts		Half	Output	7,6	14.25	15.95	17.25	18.25	19.25	20.00	20.75	21.60	22.40	23.20	23.80	24.60	24.70	25.16		
		Half	Output	\5	25.36	22.85	20.75	19.65	18.55	18.05	17.75	17.35	16.95	16.80	16.55	16.05	15.60	14.60		
	- Indu	200	riedoercy	Ŝ	425.4	416.7	411.5	408.2	404.9	387.4	401.6	399.8	398.2	396.8	395.3	392.2	389.3	384.5		
		į	9 3 3		2151	2156	2159	2203	2206	2210	2214	2218	2221	2224	2226	2228	2230	2232		

TABLE 4-91 8 DIODE FREQUENCY SENSING S/N 11 AT END OF LOW POWER RUN

Input

Neutron Exposure 3.46 (11) nvt Gamma Dose 1.23 (6) Rads

TABLE 4-92 8 DIODE FREQUENCY SENSING S/N 11 AT END OF TEST WITH LIH SHIELD

																			
Differential	Output	٧7	11.10	7.15	3.85	1.30	70	-1.70	-2.55	-3.80	-4.90	-5.95	-6.70	-8.40	-9.20	-10.10			
Half	Output	9/	14.05	15.85	17.10	18.45	19.25	19.80	20.35	21.25	22.00	22.75	23.20	24.45	24.70	24.70			
Half	Output	٧5	25.16	23.00	20.95	19.75	18.55	18.10	17.80	17.45	17.10	16.80	16.50	16.05	15.50	14.60			
	rrequency	C	425.5	416.8	411.5	408.0	404.7	403.1	401.8	399.8	398.4	396.8	395.3	392.3	389.0	384.6			
Q.	U = -		1615	1619	1622	1626	1629	1633	1636	1640	1643	1646	1648	1657	1700	1702			
	Half Half	Jency Half Half Output	Frequency Half Half Output Output V5 V6	Frequency Half Half CPS Output Output V5 V6 V6 5 425.5 25.16 14.05	Frequency Half Half CPS Output Output K V5 V6 S 425.5 25.16 14.05 P 416.8 23.00 15.85	Frequency Half Half CPS Output Output S 425.5 VS V6 S 425.5 25.16 14.05 P 416.8 23.00 15.85 A11.5 20.95 17.10	Frequency Output Output Output CPS V5 V6	Frequency Half Half CPS Output Output CPS V5 V6 425.5 25.16 14.05 416.8 23.00 15.85 411.5 20.95 17.10 408.0 19.75 18.45 404.7 18.55 19.25	Frequency Half Half CPS Output Output 5 425.5 25.16 14.05 9 416.8 23.00 15.85 2 411.5 20.95 17.10 5 408.0 19.75 18.45 9 404.7 18.55 19.25 3 403.1 18.10 19.80	Frequency Half Half CPS Output Output S 425.5 25.16 14.05 9 416.8 23.00 15.85 2 411.5 20.95 17.10 5 408.0 19.75 18.45 9 404.7 18.15 19.25 3 403.1 18.10 19.80 5 401.8 17.80 20.35	Frequency Half Half CPS Output Output 5 425.5 25.16 14.05 9 416.8 23.00 15.85 2 411.5 20.95 17.10 5 408.0 19.75 18.45 9 404.7 18.55 19.25 3 401.8 17.80 20.35 5 401.8 17.45 21.25	Frequency Half Half CPS Output Output 425.5 25.16 14.05 416.8 23.00 15.85 411.5 20.95 17.10 408.0 19.75 18.45 404.7 18.55 19.25 401.8 17.80 20.35 401.8 17.45 21.25 399.8 17.10 22.00	Frequency Half Half CPS Output Output CPS V5 V6 425.5 25.16 14.05 416.8 23.00 15.85 411.5 20.95 17.10 408.0 19.75 18.45 404.7 18.55 19.25 401.8 17.80 20.35 399.8 17.45 21.25 396.8 16.80 22.75	Frequency Half Half CPS Output Output S 425.5 25.16 14.05 S 416.8 23.00 15.85 A 416.8 20.95 17.10 S 408.0 19.75 18.45 S 404.7 18.55 19.25 S 401.8 17.80 20.35 S 399.8 17.45 21.25 S 396.8 16.80 22.75 S 395.3 16.50 23.20	Frequency Half Half CPS Output Output CPS V5 V6 425.5 25.16 14.05 416.8 23.00 15.85 411.5 20.95 17.10 408.0 19.75 18.45 404.7 18.55 19.25 403.1 18.10 19.80 401.8 17.45 21.25 399.8 17.45 22.03 396.8 16.80 22.75 395.3 16.50 23.20 392.3 16.05 24.45	Frequency Half Half CPS Output Output CPS V5 V6 S 425.5 25.16 14.05 P 416.8 23.00 15.85 S 411.5 20.95 17.10 S 408.0 19.75 18.45 S 404.7 18.55 19.25 S 403.1 18.10 19.80 S 401.8 17.45 21.25 S 399.8 17.45 21.25 S 396.4 17.10 22.00 S 396.8 16.80 22.75 S 395.3 16.50 24.45 S 389.0 15.50 24.45	Frequency Half Half Half CPS Output Output VS V6 425.5 25.16 14.05 411.5 20.95 17.10 408.0 19.75 18.45 404.7 18.55 19.25 401.8 17.80 20.35 399.8 17.10 22.06 396.8 16.80 22.75 395.3 16.50 24.45 389.0 15.50 24.70	Frequency Half Half CPS Output Output 425.5 25.16 14.05 416.8 23.00 15.85 411.5 20.95 17.10 404.7 18.55 19.25 404.7 18.55 19.25 401.8 17.80 20.35 399.8 17.45 21.25 396.8 16.80 22.75 395.3 16.80 22.75 395.3 16.50 24.70 384.6 14.60 24.70	Frequency CPS Curput CPS V5 V5 V6 V6 V6 V6 V6 V6 V6 V7 V6 V7 V6 V6 V6 V7

Neutron Exposure 8.1 (11) nvt Gamma Dose 2.9 (6) Rads

TABLE 4-93 8 DIODE FREQUENCY SENSING S/N 11 POST-TEST AT 100°F

	Input		Output de Volts	
Time	L	Half	Half	Differential
)	Frequency	Output	Output	Output
	CPS	٧5	7,6	//
0927	425.5	22.10	12,85	9,25
0931	416.7	20.65	14.45	6.20
0935	411.5	19.00	15.50	3.50
0941	408.2	18.00	16.40	1.60
0948	404.9	17.00	17.05	05
0953	403.2	16.65	17.35	70
9560	401.6	16.30	17.85	-1.55
1000	400.0	15.90	18.60	-2.70
1004	398.4	15.65	19.00	-3,35
1020	396.8	15.40	19,55	-4.15
1023	395.3	15.10	19.95	-4.85
1029	392.2	14.60	20.75	-6.15
1032	389.1	14.15	21.25	-7.10
1036	384.6	13.40	21.40	-8.00

Neutron Exposure 5.1 (13) nvt Gamma Dose 4.65 (6) Rads

Table 4-94 8 diode frequency sensing s/n 4 pre-test at 100°F

	Differential	ţ		85	01	8	.50	02	01	20	01	25	20	01	30	09	55		
	Diffe	Output	//	10.85	6.10	3.00	•	-1.70	-3.10	-4.20	-5.10	-6.25	-7.20	-8.10	-9.30	-9.60	-10.55	 	
Output de Volts	Half	Output	۸۶	14.60	16.35	17.60	18.75	19.95	20.95	21.65	22.25	23.00	23.85	24.40	24.95	24.85	24.80		
	Half	Output	٧5	25.46	22.45	20.60	19.25	18.25	17.85	17.45	17.15	16.75	16.65	16.30	15.65	15.25	14.25		
Input	L	Frequency	CPS	425.4	416.7	411.5	408.2	404.9	387.4	401.6	399.8	398.2	396.8	395.3	392.2	389.3	384.5		
	Time	,		2151	2156	2159	2203	2206	2210	2214	2218	2221	2224	2226	2228	2230	2232		

1ABLE 4-95 8 DIODE FREQUENCY SENSING S/N 4 AT END OF LOW POWER RUN

	_																	 	
	Differential	Output		10.90	6.45	3.20	.80	-1.45	-2.35	-3,75	-4.80	-5.60	-6.70	-7.50	-8.80	-10.10	-10.35		
Output de Volts	Half	Output	7,6	14.45	16.50	17.55	18.70	19.90	20.35	21.30	22.00	22.50	23.25	23.75	24.85	25.21	24.70		
	Half	Output	٧5	25.36	22.95	20.75	19.50	18.45	18.00	17.55	17.20	16.90	16.55	16.25	16.05	15.10	14.35		
Input		Frequency	CPS	425.4	416.7	411.7	408.2	405.0	403.4	401.6	399.8	398.6	396.8	395.1	392.2	389.1	384.6		
	;	ונטפ		2314	2318	2321	2326	2330	2335	2338	2342	2345	2347	2349	2351	2353	2356	.,	

Neutron Exposure 8.97 (11) nvt Gamma Dose 1.06 (6) Rads

TABLE 4-96 8 DIODE FREQUENCY SENSING S/N 4 AT END OF TEST WITH LIH SHIELD

	logit		1.77	
			Output ac Voits	
Time	Frequency	Half	Half	Differential
	المحاددات	Output	Output	Output
	5	٧5	۸۶	^/
1615	425.5	24.85	14.25	10.40
1619	416.8	22.35	00.91	6.35
1622	411.5	20.30	17.40	3.10
1626	408.0	19.25	18.70	.55
1629	404.7	18.15	19,45	-1.30
1633	403.1	17.70	20.20	-2.50
1636	401.8	17.35	20.90	-3.55
1640	399.8	16.95	21.70	-4.75
1643	398.4	16.70	22.25	-5.55
1646	396.8	16.45	23.00	-6.55
1648	395.3	16.15	23.40	-7.25
1657	392.3	15.70	24.40	-8.70
1700	389.0	15.10	24.40	-9.30
1702	384.6	14.20	24.20	-10.00

Neutron Exposure 2.1 (12) nvt Gamma Dose 2.5 (6) Rads

TABLE 4-97 8 DIODE FREQUENCY SENSING S/N 4 POST-TEST AT 100°F

	Differential	Output	//	8,10	5.10	2.80	1.10	45	-1.25	-1.85	-2.70	-3.45	-4.15	-4.75	-5.80	-6.50	-7.30		
Output de Volts	Half	Output	9/	12.65	14.25	15.20	16.00	16.70	17.15	17.45	18.20	18.50	18.90	19.20	19.80	20.20	20.15		
	Half	Output	٧5	20.75	19,35	18.00	17.10	16.25	15.90	15.60	15.50	15.05	14.75	14.45	14.00	13.70	12.85		
Input		rrequency	CPS	425.5	416.7	411.5	408.2	404.9	403.2	401.6	400.0	398.4	396.8	395,3	392.2	389.1	384.6		
		ש ב		0927	0931	0935	0941	0948	0953	0956	1000	1004	1020	1023	1029	1032	1036		,

Neutron Exposure 6.4 (13) nvt Gamma Dose 3.96 (6) Rads

TABLE 4-98 CONTROL 8 DIODE FREQUENCY SENSING S/N 2 PRE-TEST AT 100°F

- V/- 1-	c voirs	Differential	t Output		11,05	2.00	3.70	1.30	09	5 -2.20	5 -2.85	5 -4.05	5 -5.30	-6.35	5 -7.30	-8.70	-9.45	-10.65		
	Ourpur ac Voirs	Half	ut Output		51 14.45	16.25	20 17.50	00 18.70	90 19.50	35 20.55	00 20.85	50 21.65	25 22.55	23.40	75 24.05	10 24.80	55 25.11	75 25.41	 	
		Half		٧5	25.51	23.25	21.20	20.00	18.90	18,35	18.00	17.60	17.25	17.05	16.75	16.10	15.65	14.75	 	
4.64	indui		380	S	425.4	416.7	411.5	408.2	404.9	387.4	401.6	399.8	398.2	396.8	395.3	392.2	389.3	384.5	 	
		Time			2152	2156	2200	2203	2207	2210	2214	2218	2222	2224	2226	2228	2230	2233		

TABLE 4-99 CONTROL 8 DIODE FREQUENCY SENSING S/N 2 POST-TEST AT 100°F

	Input		Output de Volts	
T.		Half	Half	Differential
) - -	Frequency	Output	Output	Output
	CPS	٧5	9/	٧٧
0927	425.5	25.76	14.55	11.20
0932	416.7	23.70	16.45	7.25
0936	411.5	21.40	17.60	3.80
0941	408.2	20.20	18.80	1.40
0948	404.9	18.95	19.75	80
0953	403.2	18.55	20.30	-1.75
0957	401.6	18.15	20.80	-2.65
1001	400.0	17.90	21.65	-3.75
1005	398.4	17,45	22.45	-5.00
1020	396.8	17.10	23.05	-5,95
1024	395.3	16.85	23.75	06.9-
1029	392.2	16.40	24.70	-8.30
1032	389.1	15,85	25.16	-9.30
1036	384.6	14.85	25,36	-10.50

TABLE 4-100 CONTROL 8 DIODE FREQUENCY SENSING S/N 6 PRE-TEST AT 100°F

Output de Volts	Half Differential	Output Output Output	V5 V6 V7	25.81 14.35 11.46	22.70 15.80 6.90	20.80 16.90 3.90	19.40 17.90 1.50	18.40 18.6525	17.80 19.35 -1.55	17.45 20.00 -2.55	17.15 20.75 -3.60	16.70 21.55 -4.85	16.55 22.40 -5.85	16.30 23.10 -6.80	15.75 24.15 -8.40	15.10 25.00 -9.90	14.60 25.41 -10.81	
ō				25.81	22.70	20.80	19.40	18.40	17.80	17.45	17.15	16.70	16.55	16.30	15.75	15.10	14.60	
Input	7.00g		C.S.	425.4	416.7	411.5	408.2	404.9	387.4	401.6	399.8	398.2	396.8	395.3	392.2	389.3	384.5	
	T.			2152	2156	2200	2203	2207	2210	2214	2218	2222	2224	2226	2228	2230	2233	

TABLE 4-101 CONTROL 8 DIODE FREQUENCY SENSING S/N 6 POST-TEST AT 100°F

	Input		Output de Volts	
	L	Half	Half	Differential
) 	Frequency	Output	Output	Output
	CPS	٧5	۸۷	٧٧
0927	425.5	26.11	14.40	11.71
0932	416.7	23,15	16.00	7.15
0936	411.5	20.95	17.00	3.95
0941	408.2	19,45	18.05	1.40
0948	404.9	18.45	18.80	35
0953	403.2	17.95	19.30	-1.35
2560	401.6	17.55	19,95	-2.40
1001	400.0	17.35	20.85	-3.50
1005	398.4	16.90	21.50	-4.60
1020	396.8	16.55	22.20	-5.65
1024	395.3	16.35	22.90	-6.55
1029	392.2	15.90	24.00	-8.10
1032	389.1	15.60	24.75	-9.15
1036	384.6	14.75	25.36	-10.61

TABLE 4-102 8 DIODE FREQUENCY SENSING S/N 7 PRE-TEST AT 160°F

	Differential	Output	٧٧	 -8.95	3.00	9.20	-6.75	-3.40	25	6.30	
Output de Volts	Half	Output	76	24.35	17.50	15.10	23.40	21.15	19.15	16.30	
	Half	Output	V5	15.40	20.50	24.30	16.65	17.75	18.90	22.60	
Input		Frequency	CPS	390.0	410.0	420.2	394.9	400.0	405.0	415.1	
	;	- ue		1503	1505	1506	1921	1923	1924	1925	

TABLE 4-103 8 DIODE FREQUENCY SENSING S/N 7 AT END OF LOW POWER RUN

				···								 	 		 	
	Differential	Output	77	11.40	7.45	4.30	10	-2.75	-6.15	-8.20	-10.00					
Output de Volts	Half	Output	۸6	14.15	15.95	17.05	19.05	20.65	23.05	24.35	25.21					
	Half	Output	٧5	25.56	23.40	21.35	18.95	17.90	16.90	16.15	15.20					
Input		Frequency	CPS	425.5	416.5	411.5	404.7	400.8	395.9	392.2	386.1					
	, i	ש ב ב		1053	1057	1011	1104	1108	1112	1116	1119					

Neutron Exposure 5.56 (11) nvt Gamma Dose 1.81 (6) Rads

TABLE 4-104 8 DIO DE FREQUENCY SENSING S/N 7 POST-TEST AT 160°F

Time Frequency CPS 0155 416.7 0159 409.8 0203 406.7 0204 403.2 0205 400.0 0206 396.8 0209 390.6 0210 387.6	7		
	5	Half	Differential
	Output	Output	Output
	٧5	9/	٧٧
	23.50	15.80	7,70
	21.85	16.50	5,35
	20.65	17.35	3,30
	19.60	18.55	1.05
	18.55	19.40	85
	17.80	20.85	-3.05
	17.05	22.50	-5.45
	16.50	23.85	-7.35
	16.15	24.70	-8.55
	15.40	25.06	-9.65
	14.80	24.95	-10.15

Neutron Exposure 1.2 (12) nvt Gamma Dose 3.95 (6) Rads

TABLE 4-105 8 DIODE FREQUENCY SENSING S/N 8 PRE-TEST AT 160°F

	Input		Output de Volts	
		Half	Half	Differential
D = = -	Frequency	Output	Output	Output
	CPS	٧5	9/	٧٧
1503	390.0	15.40	25.36	-9.96
1505	410.0	20.65	17.30	3.35
1506	420.2	24,40	15.15	9.25
1921	394.9	16.55	23.20	-6.65
1923	400.0	17.55	20.95	-3.40
1924	405.0	19.05	19.00	0.05
1925	415.1	22.70	16.35	6.35

TABLE 4-106 8 DIODE FREQUENCY SENSING S/N 8 AT END OF LOW POWER RUN

	Differential	Output	٧٧	11.31	7.50	4.50	0.0	-2.60	-5.95	-8.15	-10.46	
Output de Volts	Half	Output	۸6	14.30	16.00	17.00	19.00	20.50	22.75	24.30	25.41	
	Half	Output	٧5	26.01	23.50	21.50	19.00	17.90	16.80	16.15	14.95	
Input		r redoericy	CPS	425.5	416.5	411.5	404.7	400.8	395.9	392.2	386.1	
	Time			1053	1057	1011	1104	1108	1112	1116	1119	

Neutron Exposure 4.5 (11) nvt Gamma Dose

TABLE 4-107 8 DIODE FREQUENCY SENSING S/N 8 POST-TEST AT 160°F

_			Т			·		:-			-	<u></u>					
	Differential	Output	//	7.75	60.9	3.45	1.45	75	-2.95	-5.25	-7.25	-8.65	-10.01	-10.61			
Output de Volts	Half	Output	9/	15.95	16.06	17.40	18,35	19.40	20.75	22.30	23.70	24.55	25.31	25,21			
	Half	Output	٧5	23.70	22.15	20.85	19.80	18.65	17.80	17.05	16.45	15.90	15.30	14.60			
Input	,	Frequency	CPS	416.7	413.1	409.8	406.7	403.2	400.0	396.8	393.5	390.6	387.6	384.3			
	, -	ש ב		0155	0159	0202	0203	0204	0205	0209	0208	020	0210	0211			

Neutron Exposure 9.7 (11) nvt Gamma Dose 3.8 (6) Rads

TABLE 4-108 8 DIODE FREQUENCY SENSING S/N 9 PRE-TEST AT 160°F

	Differential	Output	٧٧	-10.05	2.85	9.15	-6.85	-3.85	55	6.15			,		
Output de Volts	Half	Output	۸6	25.66	17.40	15.05	23.45	21.40	19.10	16.30					
	Half	Output	٧5	15.60	20.25	24.20	16.60	17,55	18.55	22.45					
Input	Frequency	(Supplied)		390.0	410.0	420.2	394.9	400.0	405.0	415.1					
	a Ei)		1503	1505	1506	1921	1923	1924	1925					

Neutron Exposure 3.76 (11) nvt Gamma Dose 2.78 (6) Rads

TABLE 4-110 8 DIODE FREQUENCY SENSING S/N 9 POST-TEST AT 160°F

	Differential	Output	٧7	1	/.40	5.00	2.95	.70	-1.55	-3.65	-5.85	-7.70	-8.65	-9.85	-10.20			
Output de Volts	Half	Output	۸6		15.90	16.70	17.55	18,70	20.00	21.35	22.85	24.20	24.85	25.26	24.90			
	Half	Output	٧5		23,30	21.70	20.50	19.40	18.45	17.70	17.00	16.50	16.20	15.40	14.70			
Input	L	requency	CPS		416.7	413.1	409.8	406.7	403.2	400.0	396.8	393.5	390.6	387.6	384.3		ul Palaca (III ac	
		<u> </u>			0155	0159	0202	0203	0204	0205	0206	0208	0206	0210	0211			

Neutron Exposure 8.1 (11) Gamma Dose 2.9 (6) F

4-134

TABLE 4-111 8 DIODE FREQUENCY SENSING S/N 10 PRE-TEST AT 160°F

	Differential	Output	٧٧	-10.30	3.10	8.90	-6.70	-3.55	45	6.35				
Output de Volts	Half	Output	9/	25.96	17.40	15,30	23.30	21.00	19.20	16.25				
	Half	Output	٧5	15.65	20.50	24.20	16.60	17.45	18.75	22.60				
Input	Fredited	CPS	5	390.0	410.0	420.2	394.9	400.0	405.0	415.1	41-44			
	ï	9 E E		1503	1505	1506	1921	1923	1924	1925				

TABLE 4-112 8 DIODE FREQUENCY SENSING S/N 10 AT END OF LOW POWER RUN

Half Output V5 V5 S2.25 S23.25 S1.35 S17.75 S16.15 S16.15 S17.75					
Frequency Output Half Half CPS Output Output V6 V6 V5 V5 V6 V6 V5 V6 V5 V6		Input		Output de Volts	
CPS Output Output V6 V6 V6 V5 V5 V6	Time		Half	Half	Differential
425.5		rrequency	Output	Output	Output
425.5 25.56 14.05 416.5 23.25 15.85 411.5 21.35 17.00 404.7 18.90 18.95 400.8 17.75 20.75 395.9 16.75 22.90 392.2 16.15 24.25 386.1 15.05 25.16		S	٧5	۸6	٧٧
416.5 23.25 15.85 411.5 21.35 17.00 404.7 18.90 18.95 400.8 17.75 20.75 395.9 16.75 22.90 392.2 16.15 24.25 386.1 15.05 25.16 -1	1053	425.5	25.56	14.05	11,50
411.5 21.35 17.00 404.7 18.90 18.95 400.8 17.75 20.75 395.9 16.75 22.90 392.2 16.15 24.25 386.1 15.05 25.16	1057	416.5	23.25	15,85	7.40
404.7 18.90 18.95 400.8 17.75 20.75 395.9 16.75 22.90 392.2 16.15 24.25 386.1 15.05 25.16	1011	411.5	21.35	17.00	4.35
400.8 17.75 20.75 395.9 16.75 22.90 392.2 16.15 24.25 386.1 15.05 25.16	1104	404.7	18.90	18.95	05
395.9 16.75 22.90 392.2 16.15 24.25 386.1 15.05 25.16	1108	400.8	17.75	20.75	-3,00
392.2 16.15 24.25 386.1 15.05 25.16	1112	395.9	16.75	22.90	-6.15
386.1 15.05 25.16	1116	392.2	16.15	24.25	-8.10
	1119	386.1	15.05	25,16	-10.10
	- 47.0				

4-136

9.75 (11) nvt 2.78 (6) Rads

Neutron Exposure Gamma Dose

TABLE 4-113 8 DIODE FREQUENCY SENSING S/N 10 POST-TEST AT 160°F

			—Т	 											 	·	
	Differential	Output		7.50	5.45	3.40	1.15	85	-3.05	-5.35	-7.25	-8.65	-9.65	-10.15			
Output dc Volts	Half	Output	۸۸	15,70	16.40	17.25	18.45	19.35	20.80	22.35	23.70	24.50	25.00	24.85			
	Half	Output	٧5	23,30	21.85	20.65	19.60	18.50	17.75	17.00	16.45	15.85	15.35	14.70			
Input	L	Frequency	CPS	416.7	413.1	409.8	406.7	403.2	400.0	396.8	393.5	390.6	387.6	384.3			
	3.0	2		0155	0159	0202	0203	0204	0205	0209	0208	020	0210	0211			

Neutron Exposure 2.1 (12) nvt Gamma Dose 2.5 (6) Rads

TABLE 4-114 CONTROL 8 DIODE FREQUENCY SENSING S/N 3 PRE-TEST AT 160°F

	Differential	Output V7	-8.70	2.60	8.60	-7.15	-4.10	75	5.60				
Output de Volts	Half	Output V6	24.35	17.45	15.25	23.55	21.30	19.20	16.45	_			
	Half	Output V5	15.65	20.05	23.85	16.40	17.20	18.45	22.05				
Input) () () () ()	CPS	390.0	410.0	420.2	394.9	400.0	405.0	415.1				
	-	υ Ε	1504	1505	1506	1921	1923	1925	1926				

TABLE 4-115 CONTROL 8 DIODE FREQUENCY SENSING S/N 3 POST-TEST AT 160°F

	Input		Output de Volts	
Ë	Frequency	Half	Half	Differential
9 E E	CPS	Output V5	Output 'V6	Output V7
0156	416.7	23.30	15.80	7.50
0200	413.1	21.70	16.50	5.20
0202	409.8	20.50	17.35	3.15
0203	406.7	19.40	18,45	. 95
0204	403.2	18.35	19.55	-1.20
0209	400.0	17.65	20.60	-2.95
0207	396.8	16.95	22.35	-5.40
0208	393.5	16.45	23.75	-7.30
020	390.6	15,95	24.65	-8.70
0210	387.6	15.45	25.36	-9.90
0212	384.3	14.85	25.31	-10.46

TABLE 4-116 CONTROL 8 DIODE FREQUENCY SENSING S/N 12 PRE-TEST AT 160°F

			т	 							 	 	 	
	Differential	Output	//	-9.66	2.45	8.30	-7.30	-4.25	06	5.80				
Output de Volts	Half	Output	۸6	25.76	17.95	15.90	24.00	21.80	19.75	16.70		·		
	Half	Output	٧5	16.10	20.40	24.20	16.70	17.55	18.85	22.50				
Input		Frequency	CPS	390.0	410.0	420.2	394.9	400.0	405.0	415.1				
	į	9 3 3		1504	1505	1506	1921	1923	1925	1926				

TABLE 4-117 CONTROL 8 DIODE FREQUENCY SENSING S/N 12 POST-TEST AT 160°F

	Input	!	Output de Volts	
T	Frequency	Half	Half	Differential
) -	CPS	Output	Output	Output
	•	٧5	9/	٧7
9510	416.7	23.80	16.15	7.65
0200	413.1	22.35	16.90	5,45
0202	409.8	21.05	17.85	3.20
0203	406.7	19,95	18.95	1.00
0204	403.2	18.90	19.95	-1.05
0209	400.0	18.15	21,30	-3.15
0207	396.8	17.40	23.10	-5.70
0208	393.5	16.75	24.35	-7.60
0700	390.6	16.30	25.06	-8.76
0210	387.6	15.55	25.46	16.6-
0212	384.3	14.90	25.21	-10.31

TABLE 4-118 TOTAL IRRADIATION DATA FOR 8 DIODE FREQUENCY SENSING SUBASSEMBLIES

Serial Number	Neutron nvt x 10 ⁻¹³	Gamma Rads × 10
1	7.0	6.3
5	6.6	6.1
11	5.1	4.65
4	6.4	3.98
7	.12	3.95
8	.097	3.8
9	.081	2.9
10	.21	2.5

4.4 MAGNETIC AMPLIFIER

The output and control characteristics of the magnetic amplifier showed little effect in the 160°F test. The results up to an equivalent dose in the 100°F test agreed well with those from the 160°F test, therefore, there was no effect due to temperature on the group of specimens up to this level of exposure. The characteristics noted from the automatic data system show a change in the low output end of the control-output characteristic curve. This change appeared to result from a coupling to ground in the L & N recorder used in the automatic system. The capacitive coupling to ground in the recorder delayed the resetting of the magnetic circuit of the saturable reactors causing some output to be observed when the control current should have produced a low output. Backup data taken during the 160°F run shows that without the coupling to ground the units did have a low output with the appropriate control currents. The remaining portion of the curve agrees quite well with that taken on the automatic system.

The additional exposure in the 100°F test caused extensive change in the control characteristics of the magnetic amplifiers, Figure 4-17. The maximum current output remained essentially constant, but decreased slightly due to the increased forward drop across diodes CR-1 and CR-2. The control current required to effect a given output increased appreciably.

After the test, Unit #1 was subjected to extensive bench tests to verify the results that had been obtained at the reactor. When the characteristic data had been taken, the diodes were replaced with diodes from a control unit. They were replaced in stages to determine the effect of each on the output of the circuit. Diode CR 1 and CR 2 were replaced initially and then Diode CR 3, a 1N2592 used to damp inductive reactance in the load, was replaced. Replacing CR 1 and CR 2 only had little effect. The control characteristics returned to normal after CR 3 was replaced.

Figure 4–18 shows oscillograph pictures of MA-1 during post bench test with a control current input that had been near the mid point of the curve. The lower photograph shows normal control restored after replacing the three diodes in the circuit. The data are shown in Tables 4–119 thru 4–127.

It can be seen from the diagram, Figure 4-16, that with an increased forward drop in CR 3, part of the discharge current from the load inductor must flow through the saturable reactor preventing it from resetting. Part of the current produced by the load inductor flows through the saturable reactor in opposition to the control current causing the control-output characteristics to be displaced in the direction of higher control currents, but having little effect on the slope of the "control" part of the curve. Bench tests wherein CR 3 and the inductive load were alternately and simultaneously replaced with equivalent resistors verified the analysis. As may be noted in the section of the SCR control and Trigger units, the mag amp circuit used to trigger the SCR's had a normal output at the end of the test. This is accounted for by the absence of the inductive load.

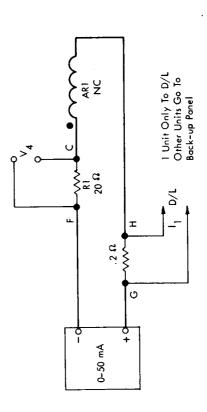
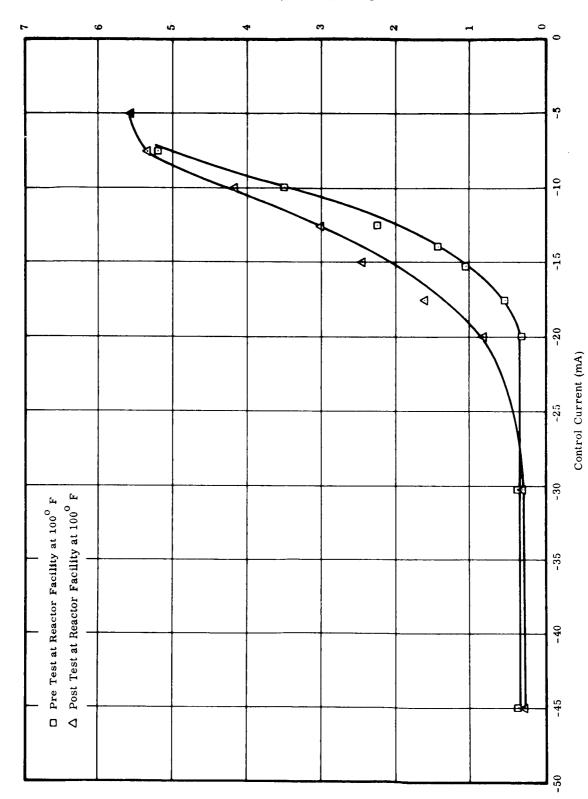



FIGURE 4 - 16 MAGNETIC AMPLIFIER

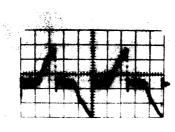
CONTROL CURRENT VERSUS OUTPUT CURRENT (PRE AND POST TEST, 100° F) MAGNETIC AMPLIFIER, SN#A1 FIGURE 4-17

Date: 7/17/64

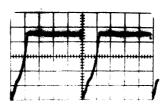
Time: Post-Irradiation

Input: 14 MA

SN - 1/V1


Gain: 20 V/cm

SN - 1/V2


Gain: 50 V/cm

Before Diode Replacement

SN - 1/V1

Gain: 50 V/cm

SN - 1/V2

Gain: 50 V/cm

After Diode Replacement

Sweep Speed: 45 m sec/cm

FIGURE 4 - 18 POST BENCH TEST, MAGNETIC AMPLIFIER SN-1

TABLE 4-119 FUNCTIONAL PRE-TEST DATA 800 WATT MAGNETIC AMPLIFIER

5/N	Control Current (MA) For Zero Output	Output Current (A) For 14 MA Input	Output Current (A) With No Input
Αl	35	4.2	7.3
A2	35	4.7	7.4
A3	28	4.2	7.4
Α4	34	4.2	7.4
A5	33	4.2	7.3
A6	28	3.7	7.3
A7	29	3.8	7.3
A8	28	3.8	7.3
A9	34	4.2	7.4
A10	26	3.5	7.4
All	26	3.4	7.4
A12	26	3.6	7.4

TABLE 4-120 PRE AND POST TEST DATA AT LABORATORY, 800 WATT MAGNETIC AMPLIFIER MODEL 091359-1-B S/N AI

Pre-Test At Laboratory	aboratory							
Control Current I, (ma)	35	90	25	20	51	10	5	0
V3 (VAC) V4 (VDC) V5 (VDC) I_ (A)	82.0 0.732 2.7 0.2	82.0 0.608 2.7 0.3	81.5 0.522 3.0 0.3	81.0 0.424 17.3 1.9	81.0 0.300 37.8 4.2	79.0 0.185 59.0 6.7	79.0 0.080 66.2 7.3	79.0 0.000 66.2 0
Inductor Voltage	80	80	80	240	3%0	230	230	230
Post-Test At Laboratory	Laboratory							
Control Current I ₁ (ma)	35	30	25	20	15	01	5	0
V3 (VAC) V4 (VDC) V5 (VDC)	78.0 0.6% 58.70	78.0 0.600 59.94 4.1	78.0 0.497 61.26	78.0 0.392 62.86	78.0 0.295 64.00	78.0 0.201 64.52	79,0 0.101 64.78	7.0 0.000 0.000
12 (A) Inductor Voltage	240	240	240	240	240	240	240	240
Post-Test at I	Post-Test at Laboratory with S/N A-11 Di	/N A-11 Diodes S	iodes Substituted		Control Current R	Control Current Required for Min. (0.3A) Output Current 150 ma.	0.3A) Output Curr	
Control Current I ₁ (ma)	35	30	25	20	15	10	5	o.
V3 (VAC) V4 (VDC) V5 (VDC) I ₂ (A)	79.0 0.703 2.62 0.3	79.0 0.599 2.78 0.3	79.0 0.4% 5.99 0.65	79.0 0.399 15.4 1.7	78.0 0.296 33.5 3.5	78.0 0.200 58.9 6.3	78.0 0.106 66.4 6.9	78.0 0.000 66.7 6.9
Inductor Voltage	120	130	150	210	258	230	240	240

TABLE 4-121 MAGNETIC AMPLIFIER S/N 1-6 PRE-TEST AT 100°F

]										
	9/N/S	5.96	4.35	3.09	1.69	16.	35.	.50	.47	·
	s/N 5	6.04	4.50	3.30	1.95	1.08	.62	.47	.45	
Output I ₂ Amperes	S/N 4	9.00	4.79	3.52	2.22	1.29	.73	.52	.52	
Outp	S/N 3	6.02	4.78	3.49	2.22	1.26	69.	, 48	. 48	
	s/N 2	6.03	4.31	3,25	1.94	1.04	5.	.41	.39	
	S/N 1	6.11	4,45	3.15	1.74	.94	09.	4.80	.48	
Input Control	(Milliamp)	5.00	7.55	10.00	12,55	15.00	17.45	30.15	44.95	
		2152	2157	2200	2204	2208	2211	2215	2219	

TABLE 4-122 MAGNETIC AMPLIFIER S/N 1-6 AT END OF LOW POWER RUN

	Input Control			Outp	Output I ₂ Amperes			T
_i_we	Current (Milliamp)	1 N/S	s/N 2	S/N 3	S/N 4	S/N 5	9 N/S	
2900	5.05	6.11	5.99	5.98	5.73	5.81	5.74	
0102	7.55	4.58	4.55	4.95	4.89	4.32	4.20	
0107	10.10	3.04	3.16	3.34	3.35	3.01	2.79	
0125	12.50	1.67	1.93	2.15	2.17	1.84	1.55	
0129	12.55	1.67	1.97	2.18	2.16	1.84	1.56	
0134	15.00	98.	1.00	1.13	1.18	.97	.78	
0142	17.60	%:	.54	.61	99.	.51	.50	
0218	30.10	.4	.34	4.	.47	88.	.42	
0223	45.20	.40	.33	44.	.45	.37	.40	
							· · · · · · · · · · · · · · · · · · ·	
Neutron Exposure (nvt)	re (nvt)	6.41 (11)	7.26 (11)	6.84 (11)	5.56(11)			1
Gamma Dose	(Rads)	2.03 (6)	2.12 (6)	(9) /c · l	(o) on · ·			

TABLE 4-123 MAGNETIC AMPLIFIER S/N 1-6 AT END OF TEST WITH LIH SHIELD

Time	Input Control			Out	Output I ₂ Amperes		
,	(Milliamp)	S/N 1	S/N 2	S/N 3	S/N 4	s/N 5	9 N/S
1616	5.05	60.9	6.02	9.00	5.95	6.02	5,95
1620	5.05	5.99	5.92	5.90	5.88	5,93	5.84
1624	9.95	3,11	3.24	3.44	3,53	3,15	2.94
1627	12.50	1.71	1.98	2.18	2.21	1.87	1 40
1630	15.10	.79	.91	1.09	1.12	.85	02
1634	17.45	.49		.58	.65	45	4
1637	30.20	.34	.28	.36	.39		78
<u></u>	45.40	.35	.28	.37	33	.33	8. 8.
Neutron Exposure (nvt)	e (nvt)	1.5 (12)	1.7 (12)	1.6 (12)	1.3 (12)		
Gamma Dose	(Rads)	4.8 (6)	5.0 (6)	3.7 (6)	2.5 (6)		

TABLE 4-124 MAGNETIC AMPLIFIER S/N 1-6 POST TEST AT 100°F

		 									1
	S/N 6	5.68	4.11	2.68	1.56	.83	.64	09.	09.	09.	
	S/N 5	 5.77	4.28	2.93	1.79	.95	.64	09.	09.	85.	
Output 1 ₂ Amperes	S/N 4	5.63	5.59	5.09	4.19	3.51	3.01	2.57	.71	.59	5.1 (13) 4.0 (6)
Outp	s/N 3	5,65	5.47	3.68	2.66	1.86	1.33	.89	.61	09.	6.4(13) 5.9 (6)
	S/N 2	5.58	5.43	4.33	3.40	2.75	2.09	1.50	.50	.47	7.5 (13) 7.95(6)
	S/N 1	5.69	5.54	4.61	3.58	3.00	2.24	1.63	.59	.54	7.5 (13)
Input Control	Current (Milliamp)	5.05	7.60	10.00	12,55	15.00	17.50	20.05	30.15	45.35	e (nvt) (Rads)
	i ae	0928	0932	0937	0942	0949	0954	8560	1001	1005	Neutron Exposure (nvt) Gamma Dose (Rads

TABLE 4-125 MAGNETIC AMPLIFIER S/N 7-12 PRE-TEST AT 160°F

	S/N 12	6.57	6.54	6.48	5.42	3.83	2.58	1.42	.73	44.	.38			
	S/N 11	9,65	6.62	6.54	5.54	3.69	2.31	1.23	09.	.43	.37			
Output I ₂ Amperes	S/N 10	6.51	6.45	6.39	4.95	3.41	2.05	1.0%	85.	.48	4.			
Outp	8/N 9	6.49	6.45	6.38	4.68	2.98	1.60	.79	.51	.45	4.			
	8/N 8	6.45	6.41	6.35	4.59	3.01	1.61	.75	84.	4.	.43			
	S/N 7	6.28	6.23	6.14	4.61	2.80	1.37	.64	.45	.41	.40			
Input Control	(Milliamp)	0.0	2.55	4.95	7.45	10.00	12.50	15.00	17.55	20.00	30.05			
Time		2203	2203	2203	2204	2204	2205	2205	2206	2206	2207			

TABLE 4-126 MAGNETIC AMPLIFIER S/N 7-12 AT END OF LOW POWER RUN

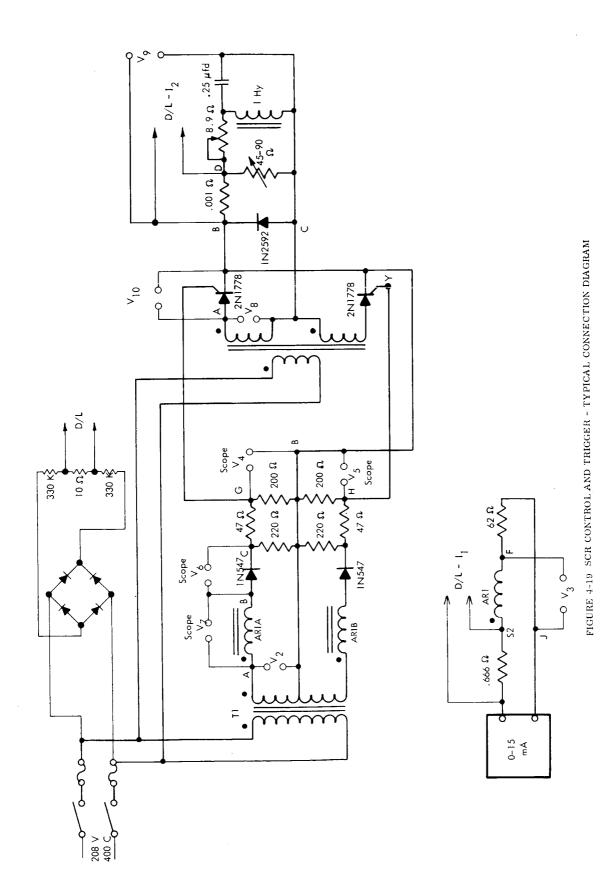
, , , , , , , , , , , , , , , , , , ,	Input Control			Out	Output I ₂ Amperes		
υ - -	Current (Milliamp)	2 N/S	8 N/S	6 N/S	S/N 10	11 N/S	S/N 12
1011	4.95	6.18	6.19	6.19	6.17	6.25	6.23
1015	09.9	5.60	5.46	5.55	5.93	5.88	5.90
1019	9.50	3.12	3.19	3.16	3.59	3.52	3.59
1023	11.00	2,27	2.42	2.37	2.87	2.67	2.90
1027	12.50	1.38	1.55	1.53	2.03	1.83	2.03
1031	14.95	.65	.74	.74	1.04	.89	1.02
1034	30.20	.40	.43	.43	.43	.50	.51
1038	45.30	.39	.4	.43	.43	.50	.51
Neutron Exposure Gamma Dose	(nvt) (Rads)	6.95 (11) 2.18 (6)	7.88 (11) 2.28 (6)	7.42 (11) 1.69 (6)	6.04 (11) 1.14 (6)	·	

TABLE 4-127 MAGNETIC AMPLIFIER S/N 7-12 POST-TEST AT 160°F

	Input Control			Out	Output I ₂ Amperes		
)	(Milliamp)	S/N 7	8/N 8	8/N 9	S/N 10	S/N 11	S/N 12
0246	2,55	6.59	6.74	6.75	6.74	6.73	69.9
0248	2.55	6.32	6.48	6.48	6.48	6.61	6.56
0253	5.00	6.27	6.58	19.9	09.9	6.56	6.54
0254	5.00	90.9	6.32	6.33	6.33	6.43	6.41
0258	7.55	4.58	4.68	4.71	5.31	5.27	5.12
0259	7.35	4.72	4.85	4.93	5.55	5.34	5.18
0305	7.55	4.56	4.63	4.67	5.23	5.18	5.00
0305	10.00	2.85	3.14	3.07	3.49	3.32	3.44
0306	12.50	1.47	1.71	1.68	2.12	1.92	2.11
0307	15.05	89.	.79	.82	1.07	.9	1.03
0307	20.05	.39	14.	.43	.45	.50	.52
0308	25.05	.37	.39	4.	.41	.48	.50
0308	30.00	.36	.39	4.	.41	.47	٠. م
Neutron Exposure Gamma Dose	(nvt) (Rads)	1.5 (12)	1.7 (12)	1.6 (12) 3.7 (6)	1.3 (12)		

TABLE 4-128 TOTAL IRRADIATION DATA FOR MAGNETIC AMPLIFIER SUBASSEMBLIES

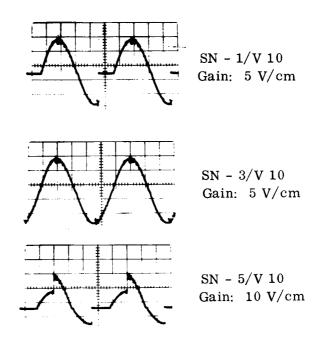
Serial Number	Neutron nyt (-13)	Gamma Rads (6)
1	7.5	7.6
2	7.5	7.95
3	6.4	5.9
4	5.1	4.0
7	.15	4.78
8	.17	5.0
9	.16	3.7
10	.13	2.5


4.5 SCR's TRIGGER AND CONTROL

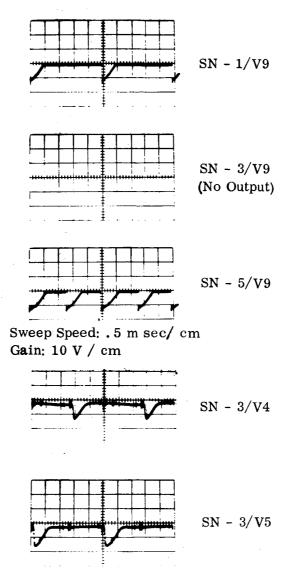
Throughout the test difficulty was experienced in obtaining good data from the SCR Control subassemblies. The noise produced by the SCR components caused early triggering of the SCR subassembly panels. The data taken during the latter part of the 160°F test was with the SCR component 400 cps power turned off. The automatic system also produced an effect on the firing point of the units. The best results were obtained from manual data. These data were measured at the backup panel and then typed out on the flexowriter. The measurements were made on one panel at a time with all other SCR panels turned off. This procedure was developed during the 160°F test. This procedure was followed more closely throughout the 100°F test.

All units were operating at the end of the 160°F and at a comparable dose on the 100°F test. At the conclusion of the 100°F test serial numbers 3 and 4 had failed and serial number 1 had only one operating SCR. It is noted that serial number 1 and 2 were in a lower flux area. Their damage is consistent with serial numbers 3 and 4 at a similar dose.

The data are shown in Table 4-129 thru 4-135. Figures 4-20 thru 4-22 shows a sequence of oscilloscope pictures taken just prior to shutdown through completion of the post bench tests. Replacing the SCR's returned normal operation.


The output from the trigger units did change similar to other subassemblies using 1N547 but the control characteristics showed little change. Their output was still well above that required to trigger a normal SCR so that replacing their diodes had little or no effect on combined subassembly performance.

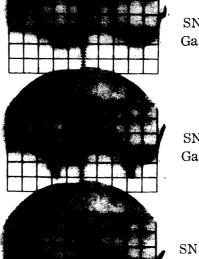
4-159


Date: 7/16/64 Time: 2240

Input: Mid-Range

Sweep Speed: .5 m sec/cm

Date: 7/16/64 Time: 2320



Sweep Speed: .5 m sec/cm Gain: .5 V/cm

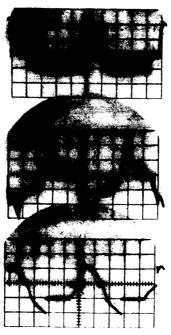
SN-3/V6

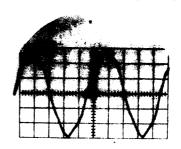
FIGURE 4 - 21 SELECTED SCR CONTROL WAVE TRACES NEAR END OF 100° F TEST

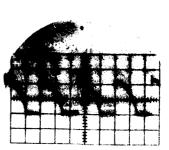
Date: Post Test Time: Post Test Input: 9.5 MA

SN - 1/V-6 Gain: 5 V/cm

SN - 1/V-7Gain: 5 V/cm


SN - 10/V-7 Gain: 50 V/cm


Before SCR and Diode Replacement


SN - 1/V6Gain: 5 V/cm

SN -1/V-7
Gain: 5 V/cm

SN - 10/V-7 Gain: 100 V/cm

SN - 1/V1 Gain: 100 V/cm

SN - 1/V9
Gain: 50 V/cm

After SCR and Diode Replacement

Sweep Speed: .5 m sec/cm

FIGURE 4 - 22 POST BENCH TEST, SCR CONTROL, SN-1

TABLE 4-129 SCR CONTROL S/N 1-6 PRE-TEST AT 100°F

										······································
	s/N 6	6.10	5.95	5.70	5.20	3.80	2.70	1.60	.50	
	S/N 5	5.90	5.80	5.60	5.20	3.80	2.85	1.80	.70	
Output 1 ₂ Amperes	S/N 4	5.90	5.80	5.60	5.00	3.70	2.80	1.80	.80	
Outpu	s/N 3	5.60	5.40	5.15	4.60	3.30	2.40	1.50	09.	
	s/N 2	5.90	00.9	5.60	5.20	4.10	3.20	2.10	.80	
	s/N 1	5.80	5.70	5.60	5.20	4.04	3.20	2.20	1.00	
Input Control	Current (Milliamp)	2.99	6.03	7.50	8.99	10.48	11.28	12.01	12.78	
, , ,	9	2251	2251	2253	2253	2254	2255	2256	2256	

TABLE 4-130 SCR CONTROL S/N 1-6 AT END OF LOW POWER RUN

•	Input Control			Outp	Output 1 ₂ Amperes		
i ae	Current (Milliamp)	s/N I	S/N 2	S/N 3	S/N 4	s/N 5	9 N/S
2302	2.97	6.15	6.20	5.80	6.20	6.20	6.50
2303	6.02	6.95	00.9	5.60	6.10	6.10	6.30
2303	7.50	5.75	5.80	5.40	5.80	5,83	9.00
2304	8.99	5.30	5.40	4.80	5.20	5.30	5.35
2305	10.48	4.20	4.30	3.50	3.80	3.80	3.90
2306	11.28	3.20	3.30	3.60	2.80	2.80	2.70
2307	12.01	2.10	2.10	1.50	1.70	1.60	1.40
2307	12.75	.80	8.	.40	09:	04.	.20
SCR Control SCR Trigger	nvt Rads nvt Rads	3.78 (11) 1.23 (6) 5.12 (11) 1.64 (6)	3.78 (11) 1.23 (6) 5.12 (11) 1.67 (6)	3.87 (11) 1.77 (6) 4.7 (11) 1.67 (6)	3.89 (11) 1.77 (6) 4.7 (11) 1.67 (6)		

Neutron Exposure (See above)

sure (See above) (See above)

TABLE 4-131 SCR CONTROL S/N 1-6 AT END OF TEST WITH LIH SHIELD

;	Input Control			o O	Output I ₂ Amperes		
Time	Current (Milliamp)	S/N 1	s/N 2	S/N 3	S/N 4	s/N 5	8/N 6
1710	6.00	5.80	0.00	5.63	6.00	6.20	6.3%
1711	7.50	5.60	5.80	5.40	5.80	00.9	6.05
1712	8.99	5.20	5.40	4.85	5.40	5.45	5.40
1712	10.51	4.20	4.40	3.60	4.00	4.10	4.00
1713	11.26	3.40	3.50	2.70	3.00	3.00	2.90
1714	11.98	2.30	2.40	1.60	1.90	1.80	1.60
1714	12.72	0.1	٥٠ ً ا	. 40	.70	09.	.30
SCR Control SCR Trigger	nvt Rads nvt Rads	8.6 (11) 2.9 (6) 1.2 (12) 3.87 (6)	8.6 (11) 2.9 (6) 1.2 (12) 3.89 (6)	9.1 (11) 4.2 (6) 1.1 (12) 3.94(6)	9.1 (11) 4.2 (6) 1.2 (12) 3.94 (6)		

Neutron Exposure (See above)

(See above)

TABLE 4-132 SCR CONTROL S/N 1-6 POST-TEST AT 100°F

Ime Current S/N 1 1055 3.00 2.80 2.70 1103 7.50 2.50 1104 9.00 2.30 1106 11.25 11.25 11.25 1109 12.00 .85 110 12.75 .50 .50	Z 88 80 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	s/N 2				
3.00 6.00 7.50 9.00 10.50 12.00	80 70 30 70 25		S/N 3	S/N 4	S/N 5	s/N 6
6.00 7.50 9.00 10.50 11.25 12.00	70 50 30 70 25	5.40			6.10	6.20
7.50 9.00 10.50 11.25 12.00 12.75	50 30 70 25	5.20			9.00	9.00
9.00 10.50 11.25 12.00 12.75	30 70 25	5.00			5.90	5.80
10.50 11.25 12.00 12.75	70	4.70			5.40	5.30
11.25 12.00 12.75	25	3.90			4.10	4.00
12.00		3.10			3.20	3.10
12.75	85	2.00			2.10	1.90
	50				.85	.55
SCR nvt 4.4 (14)	·· · · · · · · · · · · · · · · · ·	4.4 (13)	5.9 (13)	5.9 (13)		.,.
Control Rads 4.64 (6)			6.6 (6)	6.6 (6)		
SCR nvt 6.3 (13)		6.3 (13)	7.0 (13)	7.0 (13)		
	•		6.3 (6)	6.3 (6)		

Neutron Exposure (See above)

TABLE 4-133 SCR CONTROL S/N 7-12 PRE-TEST AT 160°F

															 	-
	S/N 12	 5.92	5.68	5.41	5.01	4.49	3.69	2.54	1.26	.15	. 40.	9.	6.55	69.9		
	11 N/S	5.54	5.20	4.74	4.17	3.45	2.58	1.59	.57	0.0	0.0	0.0	6.33	6.48	•	
Output I ₂ Amperes	S/N 10	5.25	4.86	4.36	3.65	2.80	1.85	.85	.46	8.	.05	.05	6.14	6.39		
Outpu	6 N/S	5.67	5.47	5.25	5.00	4.64	4.21	3.48	2.50	1.39	.40	.04	6.18	6.29		
	8/N/8	5.94	5.63	5.42	5.14	4.75	4.18	3.29	2.21	1.07	.13	.05	6.37	6.51		
	S/N 7	5.52	5.30	5.05	4.71	4.23	3.55	2.60	1.55	.51	.05	%.	6.11	6.30		
Input Control	Current (Milliamp)	5.99	6.75	7.50	8.25	9.02	9.75	10.50	11.23	11.98	12.73	13.48	3.00	1.51		
	v	2211	2213	2214	2215	2216	2216	2217	2218	2219	2220	2221	2222	2223		

TABLE 4-134 SCR CONTROL S/N 7-12 AT END OF LOW POWER RUN

iamp) 70 70 71 71 83 83 83 83 83 83 83 83 83 83 83 83 83	5.N 8 6.04 5.27 4.27 2.33 1.64 1.33 1.21 1.21	5.85 5.01 4.05 2.25 1.32 .69	5.49 3.61 1.67 .05 .05 .05	5.44 3.12 1.10 0.0 0.0 0.0	5. N 12 6. 20 5. 69 4. 34 2. 92 2. 92 2. 91 2. 89
3. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	6.04 5.27 4.27 2.33 1.64 1.33 1.21 1.27	5.85 5.01 4.05 2.25 1.32 .69	5.49 3.61 1.67 .05 .05	5.44 3.12 1.10 0.0 0.0	6.20 5.69 4.34 2.92 2.89 2.89
3. 23 33 33 33 33 33 33 33 33 33 33 33 33	5.27 4.27 2.33 1.64 1.33 1.21 1.27	5.01 4.05 2.25 1.32 .69 .11	3.61 1.67 .05 .05 .05	3.12 1.10 0.0 0.0 0.0	5.69 4.34 2.92 2.89 2.91
3.33.33.33.33.33.33.33.33.33.33.33.33.3	4.27 2.33 1.64 1.33 1.21 1.27	4.05 2.25 1.32 .69 .11	1.67 .05 .05 .05 .06	0.0	4.34 2.92 2.89 2.91 2.89
11.71 12.33 12.78 13.23 13.50 14.08	2.33 1.64 1.33 1.21 1.27	2.25 1.32 .69 .11	50. 50. 80. 80.	0.000	2.92 2.89 2.91
3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1.64 1.33 1.21 1.27 1.37	.69	. 50. 80. 80. 80.	0.00	2.91
3 2 3 8	1.33	69.	50. 8. 8.	0.0	2.91
33 88 83	1.21	= 8.	% %	0.0	2.89
9 8 8	1.27	%.	%:		
88 88	1.37		_	0.0	2.89
ri		%.	8.	0.0	2.90
က် 					
Control Rads 1.32 (6)	3.99 (11)	4.22 (11) 1.90 (6)	4.22 (11)		
SCR nvt 5.56 (11) Trigger Rads 1.77 (6)	5.56 (11)	5.10 (11)	5.10 (11)		

Neutron Exposure See above

See above

TABLE 4-135 SCR CONTROL S/N 7-12 POST-TEST AT 160°F

i	Input Control			O o	Output I ₂ Amperes		
- Lwe	Current (Milliamp)	S/N 7	s/N 8	8/N 9	S/N 10	S/N 11	S/N 12
0334	90.9	5.78	6.02	5.84	5.54	5.49	5.74
0335	8.70	4.83	5.21	5.05	3.58	3.24	4.33
0335	10.20	3.54	4.03	4.17	1.60	1.22	2.25
0336	11.73	1,29	1.76	2.11	.07	0.0	ı
0338	12.31	.33	88.	1.24	%.	0.0	ı
0338	12.75	%	81.	09.	%.	0.0	ı
0339	13.21	%	50.	.12	.07	0.0	ı
0340	13.48	%	8.	.07	%:	0.0	1
0384	7.74	5.15	5.45	5.35	4.57	4.24	5.22
SCR	n<	8.6 (11)	8.6 (11)	9.1 (11)	(11)		
Sontro -	Rads	2.9 (6)	2.9 (6)	4.2 (6)	4.2 (6)		
SCR	nv†	1.2(12)	1.2 (12)	1.1 (12)	1.2 (12)		
rigger	Rads	3.87(6)	3.89 (6)	3.94(6)	3.9 (6)		

Neutron Exposure (See above) Gamma Dose

(See above)

5.0 NUCLEAR MEASUREMENTS

Figures 5–1 and 5–2 show the integrated fast neutron flux versus total elapsed time from start of test for Aerojet tests 2 and 3 respectively. These data were obtained from nickel foils that were irradiated for the duration of each test. Figures 5–5 and 5–6 show the fast neutron integrated flux distribution over the test panels for test 2 and 3 respectively.

Figure 5-3 and 5-4 show the gamma dose versus total elapsed time from start of test for test 2 and 3. These data were obtained from the two gamma monitors which were mounted outside the enclosure using the correlation between monitor dose rates and test panel dose rates obtained during the gamma mapping. Figure 5-7 shows the gamma dose distribution for tests 2 and 3 normalized to unity at the test panel centers. Within experimental accuracy the gamma dose distributions for test 2 and for test 3 are identical. Gamma spectrum results are reported in Volume 1, Gamma Spectrum Measurements.

Shielding during these tests consisted of 8" of water and 16" of LiH until the final portion of the 100°F run (3) when the LiH shield was removed.

Tables 5-1 and 5-2 show the accumulated exposure versus time for tests 2 and 3 respectively.

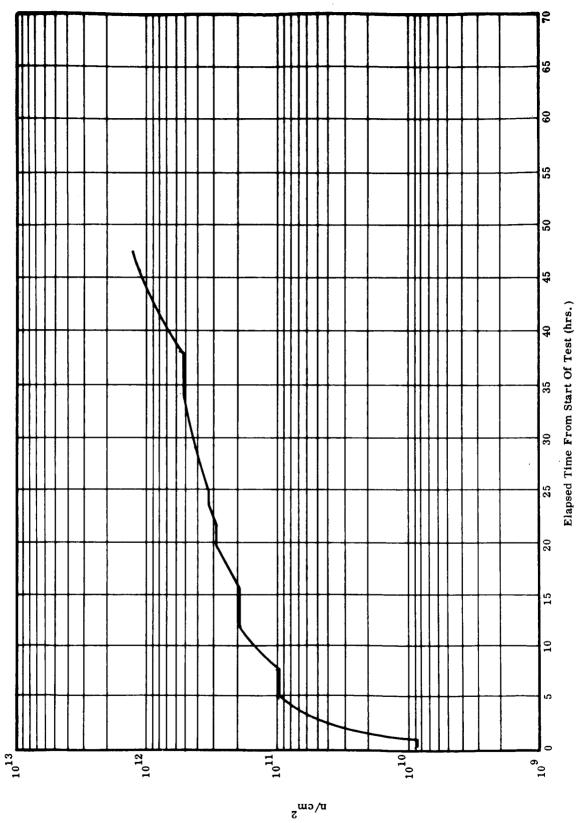


FIGURE 5-1 INTEGRATED NEUTRON FLUX (>0.1 MeV) VERSUS TIME - AEROJET TEST 2, FOIL POSITION 884

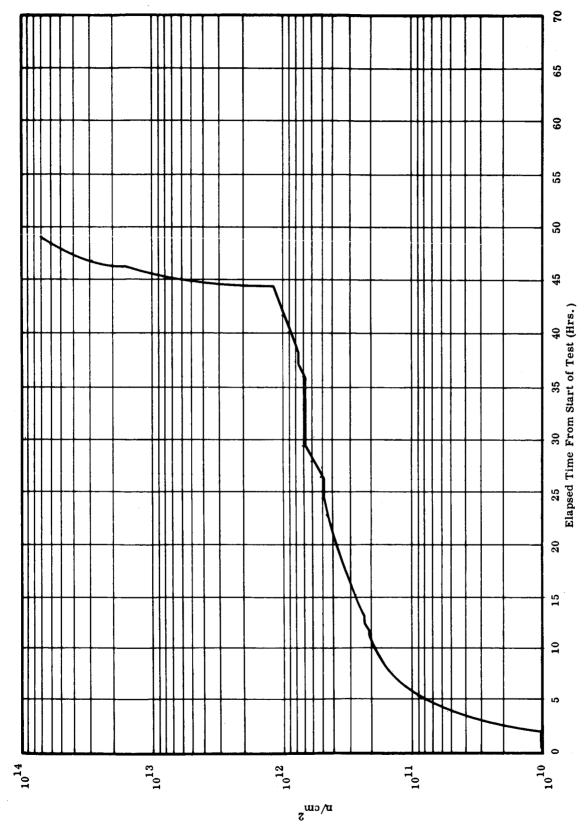


FIGURE 5-2 INTEGRATED NEUTRON FLUX (>0.1 MeV) VERSUS TIME - AEROJET TEST 3, FOIL POSITION 786

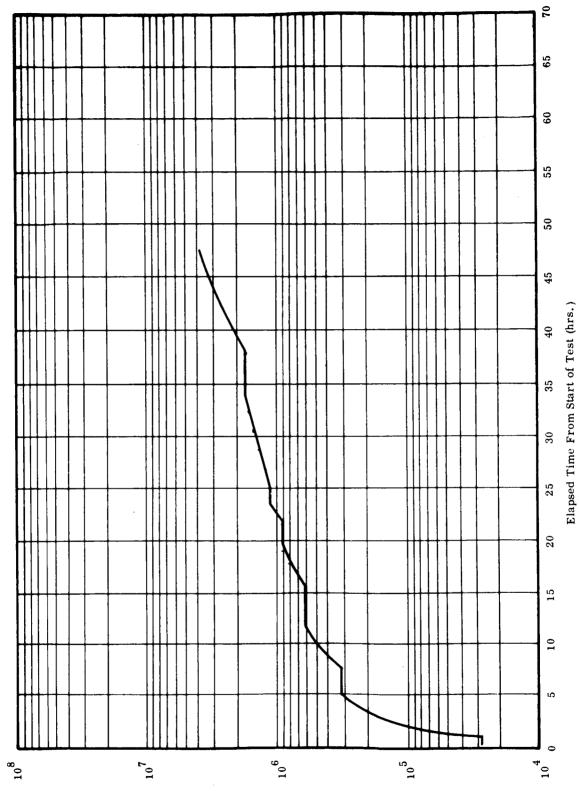


FIGURE 5-3 GAMMA DOSE VERSUS TIME - AEROJET TEST 2, CENTER OF TEST PANEL

sp**s**A

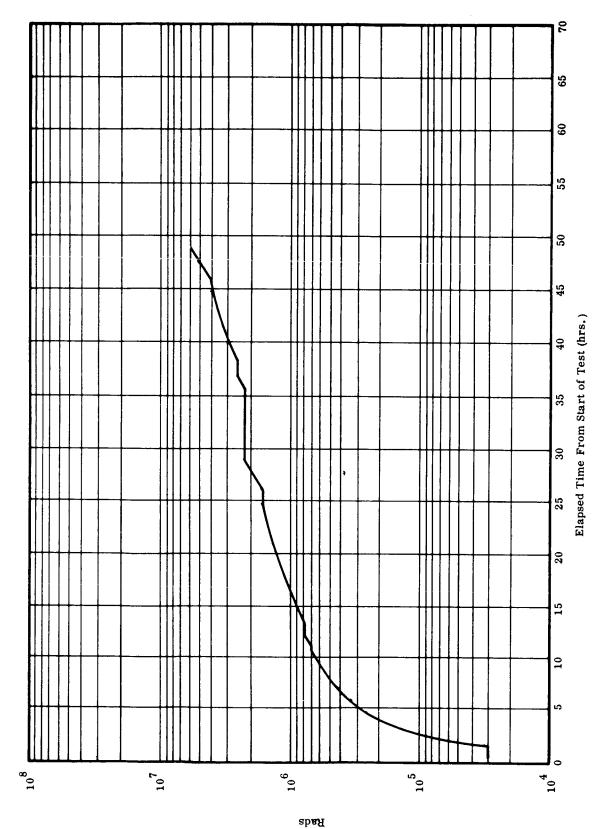
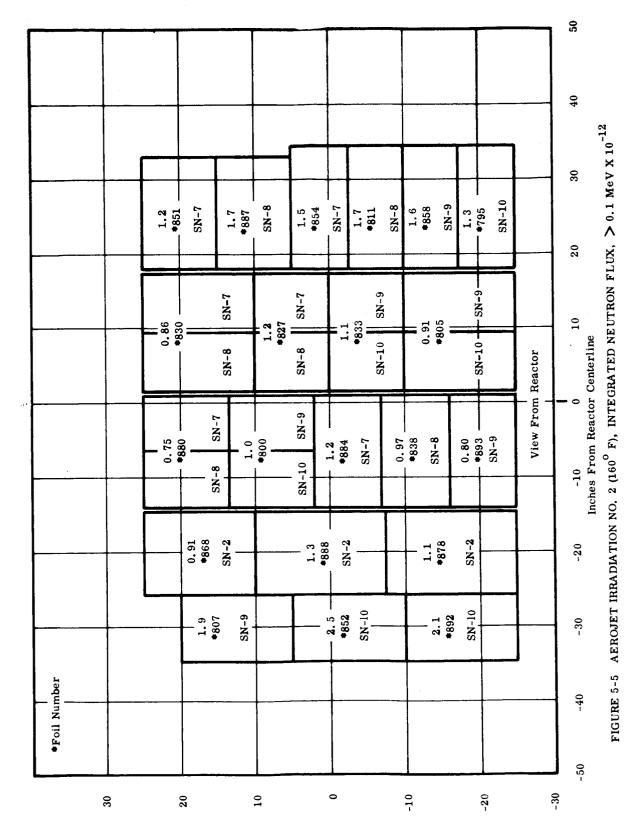
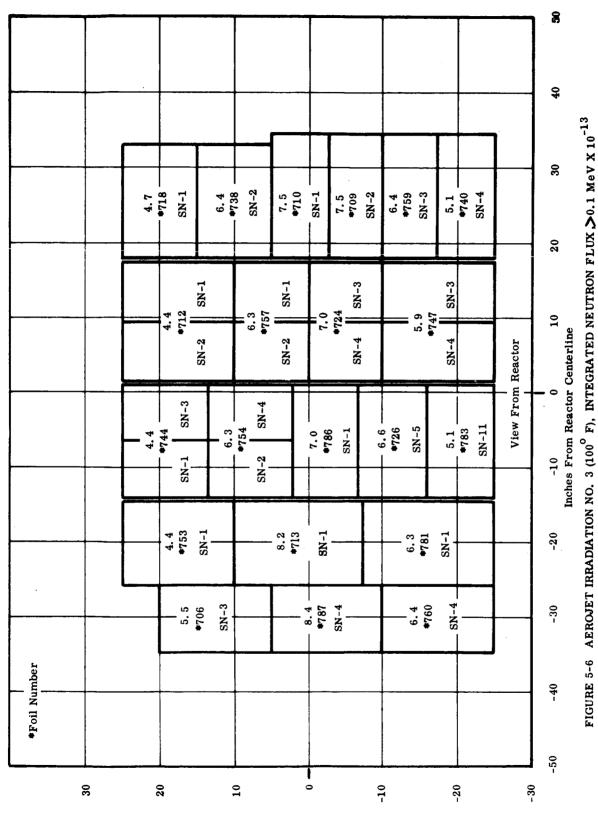




FIGURE 5-4 GAMMA DOSE VERSUS TIME - AEROJET TEST 3, CENTER OF TEST PANEL

Inches From Reactor Centerline

Inches From Reactor Centerline

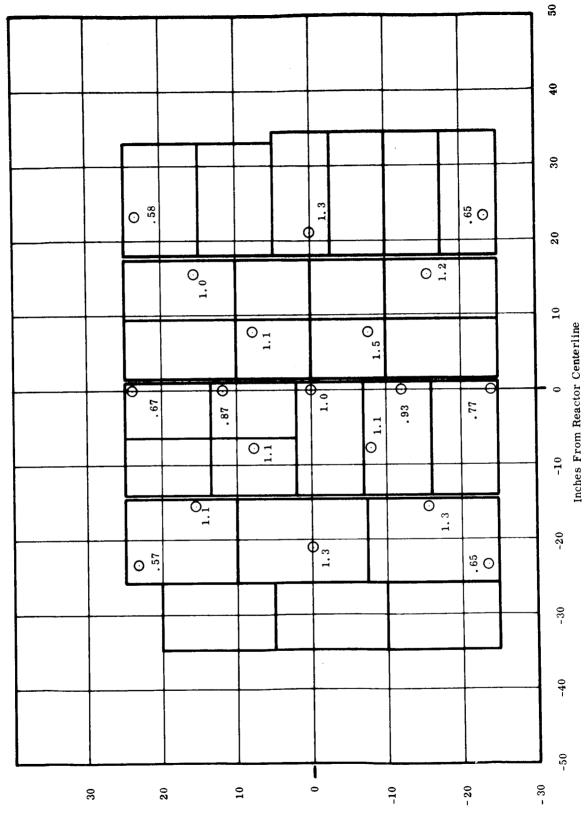


FIGURE 5-7 GAMMA DOSE DISTRIBUTION FOR AEROJET TESTS 2 AND 3, NORMALIZED TO UNITY AT THE TEST PANEL CENTERS

Inches From Reactor Centerline

TABLE 5-1 ACCUMULATED EXPOSURE VS. TIME 160°F RUN

Shield MW Level	Date and Time	(1) Accumulated Neutron Exposure (n/cm²)	(2) Accumulated Gamma Dose Rads
With LiH	7 July 0004 7 July 0028 7 July 0103 7 July 0510 7 July 0745 7 July 1205 7 July 1547 7 July 1958 7 July 2138 7 July 2338 8 July 0105 8 July 1007 8 July 1408 8 July 2400	0 8.4 (9) 8.4 (9) 9.5 (10) 9.5 (10) 1.86 (11) 1.86 (11) 2.7 (11) 2.7 (11) 3.2 (11) 3.2 (11) 5.1 (11) 5.1 (11 1.13 (12)	0 2.8 (4) 2.8 (4) 3.16 (5) 3.16 (5) 6.2 (5) 6.2 (5) 9.1 (5) 9.1 (5) 1.05 (6) 1.05 (6) 1.69 (6) 3.7 (6)

⁽¹⁾ Based on location of foil (878).

⁽²⁾ Based on dose at center of panel.

TABLE 5-2 ACCUMULATED EXPOSURE VS. TIME 100°F RUN

Shield	MW Level	Date and Time	(1) Accumulated Neutron Exposure (n/cm ²)	(2) Accumulated Gamma Dose Rads
		14 July 2334	0	0
		14 July 2400	9.1 (9)	3.04 (4)
		15 July 0120	9.1 (9)	3.04 (4)
	1 MW	15 July 1044	2.1 (11)	6.90 (5)
	- /	15 July 1054	2.1 (11)	6.90 (5)
LiH		15 July 1200	2.3 (11)	7.60 (5)
With LiH		15 July 1244	2.3 (11)	7.60 (5)
>		16 July 0012	4.7 (11)	1.57 (6)
		16 July 0100	4.7 (11)	1.57 (6)
		16 July 0358	6.6 (11)	2.19 (6)
	3 MW	16 July 1045	6.6 (11)	2.19 (6)
	က	16 July 1204	7.4 (11)	2.47 (6)
		16 July 1259	7.4 (11)	2.47 (6)
Ë	- WW	16 July 1905	1.13 (12)	3.75 (6)
Wi thout LiH		16 July 2101	1.23 (13)	4.20 (6)
i	3 MW	16 July 2105	1.23 (13)	-
5	3/	16 July 2400	6.3 (13)	6.0 (6)

⁽¹⁾ Based on location of foil (781)

⁽²⁾ Based on dose at center of panel

ADDENDUM

January 1965

FORWARD VOLTAGE DROP AND REVERSE LEAKAGE CURRENT

Two each of the diode types previously irradiated in the SNAP-8 Radiation

Effects Tests were subjected to forward voltage drop and reverse leakage

current tests. Extreme electrical test conditions were employed to determine
the effect of radiation on avalanche voltage and forward burnout current.

Two specimens from the 160°F test, the 100°F test and the 100°F control group were tested. The test methods were as previously employed in the bench tests.

The results are tabulated in Tables A-1 through A-16.

The test results are easily understood if the radiation induced trend toward intrinsic operation is remembered. The avalanche voltage increased with exposure and began to be ill defined just as the intrinsic concept would indicate.

The forward voltage drop, for a given current, decreased as the test proceeded because the junctions became heated and annealed out a considerable amount of the radiation induced change. In general, as the forward currents were increased, the diodes improved. Diode burnout power appeared to be affected little, if any, but was not computed since the junction temperature was the controlling factor and the many variables affecting this parameter were not controlled.

TABLE A-1 FORWARD CHARACTERISTICS DIODE TYPE 1N547

Forward		Forward Vo	ltage Drop	- V _f (VDC)		
Current T	Control	Diodes	0	Irradiate	d Diodes	
I _f	100°F		160°F			' Test
(Amps)	(5)	(6)	(7)	(8)	(1)	(2)
0.100	0.773	0.766	1.03	0.987	2.54	2.90
0.250	0.830	0.812	1.18	1.15	3.97	3.98
1.00	0.950	0.920	1.58	1.54	3.50*	4.57
2.00	1.08	1.00	1.80*		2.70	6.70*
3.00	1.18	1.09		1.70	2.30	2.20
4.00	1.29	1.18	1.60		2.00	
5.00	1.43	1.28		1.78*		
6.00	1.59	1.41	1.80	1.65		
7.00	1.74	1.57	1.80	1.73		
8.00	1.70*	1.71*		1.74		
9.00	1.70	1.73		1.75		
10.00	1.70	1.74	<u> </u>			
			<u> </u>			

^{*} Apparently destroyed.

TABLE A-2 REVERSE CHARACTERISTICS DIODE TYPE 1N547

Reverse			verse Leakag	ge - I _R (Amp	s) d Diodes	
Voltage Vf	Control 100°F	Test Test	160°F	Test	100°F	Test
(VDC)	(5)	(6)	(7)	(8)	(1)	(2)
200	6.25 (-9)	6.7 (-9)	3.2 (-8)	2.1 (-8)	1.72 (-7)	1.62 (-7)
400	8.7 (-9)	1.02 (-8)	5.7 (-8)	3.2 (-8)	2.6 (-7)	2.5 (-7)
600	1.08 (-8)	1.32 (-8)	7.9 (-8)	4.1 (-8)	3.4 (-7)	3.2 (-7)
800	1.30 (-8)	1.62 (-8)	1.02 (-7)	5.0 (-8)	4.2 (-7)	4.1 (-7)
1000	1.54 (-8)	2.07 (-8)	1.28 (-7)	5. 8 (-8)	5.3 (-7)	5.2 (-7)
1100						6.2 (-7)
1200	1.83 (-8)	2.9 (-8)	1.54 (-7)	6.6 (-8)	*6.7 (-7)	*7.5 (-7)
1300			1.77 (-7)			
1400			1.95 (-7)	7.3 (-8)		
1450		*		ļ		
1500	2.95 (-8)		2.25 (-7)			
1600				8.3 (-8)		
1650			4.5 (-7)			
1700				*9.8 (-8)		
1800	*					
						ļ

^{*} Avalanche

TABLE A3 FORWARD CHARACTERISTICS DIODE TYPE 1N2539

^{*} Reverse leakage excessive.

⁽s) Shorted

TABLE A-4 REVERSE CHARACTERISTICS DIODE TYPE 1N2539

	Rever	se Leakage			
Control	Diodes	- 0	Trradiate	d Diodes	
(5)	(6)	(7)	(8)	(1)	(2)
1.32 (-8)	4.2 (-8)	2.7 (-8)	5.5 (-8)	3.85 (-7)	
1.83 (-8)	1.02 (-7)	4.2 (-8)	1.14 (-7)	5.7 (-7)	ó.6 (-7)
	1.44 (-7)	5.1 (-8)	1.66 (-7)		
	1.70 (-7)				
2.46 (-8)	*2.25 (-7)	6.6 (-8)	2.5 (-7)	7.4 (-7)	1.02 (-6)
			3.0 (-7)		
		9.6 (-8)	3.8 (-7)		1.29 (-6)
F		1.26 (-7)	4.8 (-7)		1.50 (-6)
*3.63 (-8)					
		*1.74 (-7)	6.1 (-7)	9.0 (-7)	*
			7.8 (-7)		
			*9.7 (-7)	1.0 (-6)	•
				1.11 (-6)	<u>:</u>
				1.26 (-6)	
				1.44 (-6)	
				*	
	(5) 1.32 (-8) 1.83 (-8) 2.46 (-8)	Control Diodes 100° F Test (5) (6) 1.32 (-8) 4.2 (-8) 1.83 (-8) 1.02 (-7) 1.44 (-7) 1.70 (-7) 2.46 (-8) *2.25 (-7)	Control Diodes 100° F Test 160° (5) (6) (7) 1.32 (-8) 4.2 (-8) 2.7 (-8) 1.83 (-8) 1.02 (-7) 4.2 (-8) 1.44 (-7) 5.1 (-8) 1.70 (-7) 2.46 (-8) *2.25 (-7) 6.6 (-8) *3.63 (-8)	(5) (6) (7) (8) 1.32 (-8) 4.2 (-8) 2.7 (-8) 5.5 (-8) 1.83 (-8) 1.02 (-7) 4.2 (-8) 1.14 (-7) 1.44 (-7) 5.1 (-8) 1.66 (-7) 1.70 (-7) 2.46 (-8) *2.25 (-7) 6.6 (-8) 2.5 (-7) 3.0 (-7) 9.6 (-8) 3.8 (-7) 1.26 (-7) 4.8 (-7) *3.63 (-8) *1.74 (-7) 6.1 (-7) 7.8 (-7)	Control Diodes

^{*} Avalanche

TABLE A-5 FORWARD CHARACTERISTICS DIODE TYPE GE-90

Forward Current			ltage Drop	age Drop - V _f (VDC)				
I	Control	Diodes	0	Irradiate	d Diodes			
_	100°F			Test	100°F	Test		
(Amps)	(5)	(6)	(7)	(8)	(1)	(2)		
0.100	0.803	0.807	0.912	0.805	1.52	1.48		
0.200	0.831	0.831	1.08	0.855	1.83	1.79		
0.500	0.858	0.870	1.20	0.920	2.17	2.30		
1.00	0.895	0.931	1.28	1.00	2.00	1.70		
1.50	0.938	0.990	1.38	-	1.60	· -		
2.00	1.00	1.08	1.46	1.10	1.50*	1.50		
2.50	1.13	1.20	1.61	1.13	1.60	-		
3.00	1.30	1.50*	2.01	1.16	1.50	1.60		
4.00	<u>.</u>	1.50	Open	1.20*	1.50	2.00		
5.00		1.50		(s)	Į	1.90		
6.00		1.60				1.80		
7.00						(s)		
				;				

^{*} Apparently destroyed. (s) Shorted

TABLE A-6 REVERSE CHARACTERISTICS DIODE TYPE GE-90

Reverse		Re	verse Leakag	je – I _p (Amps)	
Voltage	Control	Diodes		rradiated	Diodes	
Vf ()(DC)	100°F		160°F		100°F	
(VDC)	(5)	(6)	(7)	(8)	(1)	(2)
200	2.25 (-9)	1.80 (-9)	2.75 (-9)	2.05 (-8)	2.55 (-8)	2.55 (-8)
300	5.00 (-9)	3.00 (-9)	4.10 (-9)	4.45 (-8)	3.90 (-8)	4.05 (-8)
350	7.85 (-9)		5.45 (-9)	6.65 (-8)	5.50 (-8)	
400	1.50 (-8)	5.55 (-9)	7.70 (-9)	9.90 (-8)	6.70 (-8)	7.65 (-8)
428	2.58 (-8)					
445		:			9.50 (-8)	
450	*	8.30 (-9)	1.20 (-8)	1.65 (-7)		
490			i	2.67 (-7)		
500		1.39 (-8)	2.34 (-8)	2.95 (-7)	1.74 (-7)	2.70 (-7)
530					2.61 (-7)	
550		2.82 (-8)	5.60 (-8)	6.25 (-7)	3.70 (-7)	7.7 (-7)
590		·				2.97 (-6)
600		7.55 (-8)	1.92 (-7)	1.53 (-6)	9.25 (-7)	9.70 (-6)
610		2.10 (-7)			8.90 (-6)	2.55 (-5)
625		2.79 (-7)		2.85 (-6)	*2.82 (-5)	
630		*				8.5 (-5)
640			2.13 (-7)			
645			*	*		
650						2.25 (-4)
700						*

^{*} Avalanche

TABLE A-7 FORWARD CHARACTERISTICS DIODE TYPE 1N2592

Control 100°F (5) 1.035 1.48 1.021	Diodes Test (6)	160° H (7) 1.34 1.27 0.93	Irradiated F Test (8) 1.185	1.79 1.24 1.03	2.47
(5) 1.035 1.48		1.34 1.27	(8)	1.79 1.24	(2)
1.035	(6)	1.34 1.27		1.79 1.24	<u></u>
1.48		1.27	1.185	1.24	2.47
. 021					
.		0.93		1.03	
. 06				Ī	
1	•	1.40**	1.160 (M)	(M)	0.79 (M
1.185		0.942			
	:				
	:				
-					
	.185	.185	.185		

⁽M) Melted at base plate.

^{**} Diode physically displaced at base plate.

TABLE A-8 REVERSE CHARACTERISTICS DIO DE TYPE 1N2592

Reverse		Rever	se Leakage -	I _p (Amps)					
Voltage	Control	Diodes		rradiate	Diodes				
Vf () (D.C)	100°F		160°F		100°F Test				
(VDC)	(5)	(6)	(7)	(8)	(9)	(10)			
200	4.05 (-9)		1.19 (-7)	5.9 (-8)	5.9 (-7)	1.5 (-7)			
400	7.2 (-9)	7.5 (-7)	1.62 (-7)	8.2 (-8)	7.2 (-7)	2.6 (-7)			
600	1.15 (-8)	9.9 (-7)	2.01 (-7)	9.3 (-8)	8.2 (-7)	3.7 (- <i>7</i>)			
800	2.4 (-8)	1.28 (-6)	2.4 (-7)	1.07 (-7)	9.7 (-7)	5.1 (-7)			
900	9.0 (-8)				1.14 (-6)	6.2 (-7)			
1000		*1.44 (-6)	2.8 (-7)	1.32 (-7)	1.29 (-6)	7.9 (-7)			
1050				*	1.45 (-6)	1.23 (-6)			
1075					*				
1080						4.0 (-6)			
1200			*3.3 (-7)						
	•								

^{*} Avalanche

TABLE A-9 FORWARD CHARACTERISTICS DIODE TYPE 1N3878

Forward		Forward V	oltage Drop	- V _f (VDC)						
Current	Control	Diodes		Irradiated	l Diodes					
I _f	100°F			F Test	100°F Test					
(Amps)	(5)	(6)	(7)	(8)	(1)	(2)				
6	1.22		1.50	1.36	2.31	2.46				
14				1.51		2.23				
6				1.34		1.86				
20	1.41		1.98	1.75	2.20	2.05				
6	1.22		1.33	1.55	1.45					
30			1.75	1.81	1.80	1.61 (s)				
6			1.34 (s)	1.27						
36	1.36 (s)			1.65*	1.63					
40					1.56 (s)					

⁽s) Shorted

^{*} Reverse leakage excessive.

TABLE A-10 REVERSE CHARACTERISTICS DIODE TYPE 1N3878

Reverse			erse Leakag	e – I _R (Amps)					
Voltage Vf	Control 100°F	Diodes	1600	Trradiated Test	100°F Test				
(VDC)	(5)	(6)	(7)	(8)	(1)	(2)			
200		1.2 (-6)	8.5 (-7)	1.20 (-6)	1.50 (-6)	1.90 (-5)			
300					2.15 (-6)	4.85 (-5)			
400	9.0 (-7)	1.6 (-6)	2.85 (-6)	1.60 (-6)	2.85 (-6)	5.90 (-5)			
500			8.45 (-6)		3.80 (-6)	5.85 (-5)			
550			1.32 (-5)						
600	1.2 (-6)	2.6 (-6)	2.65 (-5)	2.90 (-6)	5.3 (-6)	6.20 (-5)			
650	1.47 (-6)		4.25 (-5)						
700	1.98 (-6)	3.7 (-6)	7.75 (-5)	7.75 (-6)	9.15 (-6)	7.15 (-5)			
750	3.1 (-6)		1.11 (-4)		1.20 (-5)	8.00 (-5)			
800	5.8 (-6)	7.2 (-6)	1.77 (-4)		1.95 (-5)	1.02 (-4)			
830	8.2 (-6)								
840					2.7 (-5)				
850	1.17 (-5)	1.3 (-5)	2.35 (-4)			1.57 (-4)			
900	2.7 (-5)	3.0 (-5)	3.35 (-4)		5.4 (-5)	2.85 (-4)			
935		9.0 (-5)							
940		2.3 (-4)		i i					
950	6.0 (-5)	7.6 (-4)	5.15 (-4)		8.95 (-5)	6.0 (-4)			
990						1.0 (-3)			
1000	*		7.90 (-4)		2.25 (-4)				
1035			9.60 (-4)		*1.00 (-3)				

^{*} Avalanche

TABLE A-11 FORWARD CHARACTERISTICS DIODE TYPE 1N3888

Current	Control 100°F		oltage Drop	Irradiate	d Diodes				
$^{ m I}_{ m f}$	100°F	<u> res</u> t	16001	Test	100°F Test				
(Amps)	(5)	(6)	(7)	(8)	(1)	(2)			
12	1.17		1.30	1,01	2.01	1.77			
24			1.42						
12			1.30						
36	1.36		1.64	1.09	1.70	1.06 (M			
12	1.17		1.29	1.01	1.33				
45			1.58**						
60				1.16	1,37				
72	1.50**								
12				0.97(s)	1.17*				
				,					
i									

⁽s) Shorted.

⁽M) Melted loose at base.

^(*) Apparently destroyed.

^(**) Reverse leakage excessive.

TABLE A-12 REVERSE CHARACTERISTICS DIODE TYPE 1N3888

Reverse	Control	Reverse Le	eakage – I _R (amps) Irradiated	Diodes	
Voltage Vf	100°F	Test	160°F		100°	F Test
(VDC)	(5)	(6)	(7)	(8)	(1)	(2)
200	3.3 (-6)	5.7 (-6)	3.1 (-5)	2.75 (-6)	5.4 (-6)	4.5 (-6)
300			7.4 (-5)			4.98 (-6)
350						5.25 (-6)
400	7.5 (-6)	7.25 (-6)	1.22 (-4)	4.3 (-6)	8.7 (-6)	5.50 (-6)
450	1.2 (-5)					
500	1.7 (-5)	8.1 (-6)	*2.4 (-4)	6.8 (-6)		6.18 (-6)
550	1.9 (-5)					6.60 (-6)
600	2.7 (-5)	8.8 (-6)		9.6 (-6)	1.6 (-5)	7.20 (-6)
650						7.90 (-6)
700	*	9.6 (-6)		1.29 (-5)	2.4 (-5)	*9.50 (-6)
750				1.7 (-5)		
800		1.17 (-5)		2.8 (-5)	3.8 (-5)	
850				6.0 (-5)	4.8 (-5)	
875				*		
900		1.77 (-5)			6.5 (-5)	
950		2.46 (-5)			8.5 (-5)	
1000		4.5 (-5)			1.25 (-4)	
1050		9.0 (-5)			1.9 (-4)	
1100		9.6 (-5)			7.8 (-4)	
L	L			<u> </u>	1	<u> </u>

^{*} Avalanche

TABLE A-13 FORWARD CHARACTERISTICS DIODE TYPE GE-91

Forward		Forward Vo	oltage Drop	- V _f (VDC)		
Current	Contro	l Diodes		\	ed Diodes	
$^{ m I}_{ m f}$	100°F	Test	1600	F Test	100°F	Test
(Amps)	(5)	(6)	(7)	(8)	(1)	(2)
4.0	1.12	0.88	0.99	1.02		3.78
8.0		0.91	1.08	1.12	3.18	4.26
12.0	1.68	0.93	1.14	1.19	4.27	3, 39
20.0	2.29	0.97	1.24	1.13	3.53	$\frac{3.39}{2.74}$
24.0	1.70	0.99	1.28		2.75	2.74
12.0		0.92	1.12		2.73	2.35
36.0		1.03	1.32	1.47	2.43	2.35 2.22
12.0		0.92	1.08	1.52	2.43	$\frac{2.22}{2.02}$
40.0	1.43	1.06	1.37	1.02	2.00	2.02 2.19
48.0	2, 10	1.11	1.40	1.52	2.32	1.87
12.0		0.93	1.09	1.12	1.82	1.35
56.0	1,29	1.17	1.47	1.12	1.02	1.88
60.0	1.33	1.20	1.49	1.59	2.12	1.84
12.0	2.00	0.93	1.06	1.11	1.41	1.13
64.0		1.24	1.00	1.11	1.41	1.13
66.0	1.48	11		ŀ		1.01
68.0	2. 20	1.30				1.85
72.0	1.77*	1.38	1.60	1.62	1.96	1.84
12.0	2	0.93	1.02	1.02	1.11*	0.95*
1		0.30	1.02	1.03	1.11	0.95
	:					
	i					

^{*} Low reverse resistance.

TABLE A-14 REVERSE CHARACTERISTICS DIODE TYPE GE-91

Reverse		Reve	se Leakage	- I _D (Amps)					
Voltage	Control	Diodes	Je zeakage	Irradiated	Diodes				
Vf	100°F	Test	160°F	Test	100°F Test				
(VDC)	(5)	(6)	(7)	(8)	(1)	(2)			
200	1.70 (-7)	8.0 (-8)	2.40 (-7)	2.55 (-7)	9.0 (-7)	7.5 (-7)			
250	2.50 (-7)								
300	3.20 (-7)								
400	4.65 (-7)	1.5 (-7)	3.90 (-7)	3.45 (-7)	1.30 (-6)	1.15 (-6)			
500	6.60 (-7)		[[<u> </u>					
550	8.20 (-7)								
600	1.14 (-6)	2.65 (-7)	5.25 (-7)	4.20 (-7)	2.05 (-6)	1.50 (-6)			
650	1.92 (-6)								
700	4.55 (-6)	3.30 (-7)			2.55 (-6)				
750	8.65 (-6)								
800	1.06 (-5)	4.00 (-7)	6.60 (-7)	4.80 (-7)	3.30 (-6)	1.90 (-6)			
900	1.44 (-5)	4.70 (-7)			4.50 (-6)				
1000	1. <i>7</i> 7 (-5)	5.60 (-7)	7.95 (-7)	1.17 (-6)	6.40 (-6)	2.40 (-6)			
1050				2.86 (-6)	7.85 (-6)				
1100	2.25 (-5)	6.75 (-7)	9.30 (-7)	1	9.90 (-6)	2.85 (-6)			
1150				2.86 (-5)	1.30 (-5)				
1200	2.61 (-5)	9.70 (-7)	1	6.90 (-5)	1.87 (-5)	3.60 (-6)			
1250			1.44 (-6)	1.48 (-4)	2.73 (-5)				
1295				2.62 (-4)					
1300	2.90 (-5)	*	1.78 (-6)		4.50 (-5)	4.90 (-6)			
1350			2.44 (-6)	5.05 (-4)	8.50 (-5)				
1400	*		*		2.02 (-4)	7.60 (-6)			
1500						1.42 (-5)			
1550						2.14 (-5)			
ļ									
1									
						Į.			

^{*} Avalanche

TABLE A-15 FORWARD CHARACTERISTICS DIODE TYPE GE-92

Forward		Forward V	oltage Drop	o - V _f - (VDC	C)				
Current	Control			ed Diodes	es				
$^{ m I}_{ m f}$	100°F	Diodes Test	160°I	Test	100°F Test				
(Amps)	(5)	(6)	(7)	(8)	(1)	(2)			
35	0.98		1.31	1.10	3.4	2.06			
50						1.87			
35						1.88			
70	1.14			1.18		1.76			
35	0.96			1.08		1.65			
105	1.26		1.53	1.22	2.02	1.59			
35	0.95		1.22		1.60*	1.49			
130				1.24		1.40			
140	1.50								
35	0.96								
					,				

^{*} Reverse leakage excessive.

 TABLE 16
 REVERSE CHARACTERISTICS DIODE TYPE GE-92

Reverse			erse Leakage	X		
Voltage	Control	Diodes	160°F	rradiated	Diodes	
Vf () (D.C)		Test		Test		
(VDC)	(5)	(6)	(7)	(8)	(1)	(2)
100 150 200 250 300 350 400 450 500 550 600 650 700 725 750 800 900 950 1000 1150 1200 1250 1300 1335 1350 1375	4.6 (-7) 7.0 (-7) 9.7 (-7) 1.3 (-6) 1.68 (-6) 2.06 (-6) 2.50 (-6) 2.9 (-6) 3.4 (-6) 4.05 (-6) 4.8 (-6) 5.7 (-6) *	2.0 (-6) 4.3 (-6) 6.0 (-6) 7.5 (-6) 8.7 (-6) 9.9 (-6) 1.02 (-5) 1.08 (-5) 1.17 (-5) 1.38 (-5) 1.50 (-5) 1.62 (-5) *1.90 (-5)	4.15 (-7) 6.0 (-7) 9.3 (-7) 1.48 (-6) 1.78 (-6) 2.08 (-6) 2.65 (-6) 2.8 (-6) 3.0 (-6) 3.5 (-6) 3.5 (-6) 3.6 (-6) 4.5 (-6) 5.3 (-6) 6.7 (-6) 7.8 (-6) 9.5 (-6) 1.26 (-5)	8.8 (-7) 1.25 (-6) 1.72 (-6) 3.4 (-6) 5.6 (-6) 8.2 (-6) 1.08 (-5) 1.38 (-5) 1.65 (-5) 1.8 (-5) 2.35 (-5) 2.5 (-5) 3.3 (-5) *	1.2 (-6) 3.6 (-6) 5.8 (-6) 9.9 (-6) 1.56 (-5) 2.7 (-5) *	1.32 (-6) 2.17 (-6) 3.03 (-6) 3.57 (-6) 4.30 (-6) 5.55 (-6) 6.50 (-6) 7.82 (-6) 1.31 (-5) 1.83 (-5) 2.69 (-5) 4.21 (-5) 7.31 (-5) 1.38 (-4) 2.84 (-4)
1300 1335 1350			9.5 (-6)	3.3 (-5)		7.31 (-5) 1.38 (-4)

^{*} Avalanche

VOLTAGE SENSING UNIT

There was a null shift in the Voltage Sensing Units evident during pre and post bench tests. A null shift was also evident between bench data and data taken at the reactor. The test results at the reactor showed a progressive null shift. From the evidence available, it appeared that a resistive unbalance, or an unbalance in forward characteristics of the diodes, caused the detected shift.

Additional bench tests were run to prove this hypothesis.

The diodes were interchanged and did indeed produce a null shift in the opposite direction. The load resistance was varied from 140 ohms to 200 ohms in 20 ohm steps. The data from these tests are tabulated in Tables A-17, A-18, and A-19.

The data prove the hypothesis were correct.

Γ											рŧ	Го	w										
	^ P	(VDC)	(2)	3.00	2.71	2.47	2.23	1.99	1.72	1.48	1.26	0.99	0.76		0.54	0.27	0.00	-0.15	-0.39	-0.65	-0.90	-1.20	-1.43
2		(V	(1)	2.33				1.34				0.24		00.00				-0.82			_	-1.84	-2.06
3 UNIT S/N #A	$^{ m V}_{5}$)C)	(2)	17.91	18.49	18.98	19,40	19.85	20.41	20.93	21.41	22.00	22.41		22.93	23.47	24.02	24, 33	24.83	25.35	25.90	26.49	27.02
TAGE SENSING	Λ	(VDC)	(1)	18.17				20.22		•		22.51		23.02				24.86				26.99	27.31
POST IRRADIATION TEST - VOLTAGE SENSING UNIT S/N #A2	$^{ m V}_4$	(VDC)	(2)	20.91	21.19	21.44	21.62	21.88	22.17	22.41	22.67	23.00	23.19		23.48	23.74	24.02	24.19	24.43	24.72	25.00	25, 31	25.58
T IRRADIATIO	Λ	(V)	(1)	20.51				21.59				22.78		23.02				24.08				25.17	25.26
TABLE A-17 POS	Output (I ₁)	(MADC)	(2)	19.7	17.8	16.2	14.8	13.4	11.6	9.90	8.40	6.40	5.60		3, 55	1.90	00.00	-1.04	-2.61	-4.22	-5.95	-7.90	-9.54
TAJ	Outpu	(MA	(1)	16.2				8, 92		-		1.65		0.00				-5.20			·	-12.4	-13.7
		Input	VAC	188	190	192	194	196	198	200	202	204	206	207	208	210	212	214	216	218	220	222	224

Diodes in original position.
 Diodes in each respective halves interchanged.

TABLE A-18 POST-IRRADIATION TEST - VOLTAGE SENSING UNIT S/N #A2

V ₆				рŧ	o7 u	ичО 0	ÞΙ		bso.1 mdO 0a1					
	VDC	(2)			0.41		00.00	-0.17				0, 33	00.00	-0.25
	[A	(1)	0.42	00.00		-0.64			0.24	00.00	0.31			
7, 5	VĎC	(2)			23.42		24.51	24.78				23.30	23.99	24.49
	Λ	(1)	22.29	23.24		24.60			22.24	22.75	23, 43		. "	
	4 VDC	(2)			23.80		24.51	24.61				23,65	23.99	24.23
$^{\mathrm{V}}_{_{2}}$		(1)	22.74	23.24		23.98			22.50	22.75	23.11			
Output (I ₁)	(MADC)	(2)			2.82		00.00	-1.23				2.22	00.00	-1.67
Out		(1)	3.17	00.00		-4.60			1.60	0.00	-1.90			
	Input	VAC	204	208	210	212	214	216	204	206	208	210	212	214

Diodes in original position.
 Diodes in each respective halves interchanged.

					ad	oJ m	ЧО 08	31		200 Ohm Load													
TABLE A-19 POST IRRADIATION TEST - VOLTAGE SENSING UNIT S/N #A2	V ₆	VDC	VDC	VDC	VDC	VDC	VDC	VDC	VDC	VDC	(2)				0.19	00.00	-0.17				0.11	00.00	-0.22
							(1)	09.0	00.00	-0.16				0.24	00.00	-0.18							
	V ₅	VDC	(2)				23.33	23.75	24.07				23.34	23.60	24.04								
	Δ	[V	(1)	22, 39	22.51	22.84				21.88	22.35	22.75											
	4	VDC	(2)				23, 55	23.75	23.92				23.49	23.60	23, 83								
	V ₄	ΙΛ	(1)	22.45	22.51	22.68				22.14	22, 35	22.58											
	Output (I ₁)	(MADC)	(2)				1.16	0.00	-0.99		14·10		0.65	0.00	-1.17								
	Out		(M	(1)	0.47	00.00	-0.90				1.28	00.00	-0.95										
		Input	VAC	204	205	206	210	211	212	202	204	206	210	210.5	212								

Diodes in original position.
 Diodes in each respective halves interchanged.

MAGNETIC AMPLIFIER CORE FLUIDS

The magnetic amplifier cores from specimens Serial Numbers A-2, A-6 and A-10 were opened and the fluid examined.

A small hole was drilled into the core of each covering and the core placed over a beaker to drain. Serial No. A-2, or the 100°F test specimen, would not drain and had to be opened by machining. The fluid from the control specimen (A-6) was clear and viscous while that from the 160°F test core (A-10) was slightly darkened and somewhat more viscous. The A-2 specimen fluid jelled and had to be scraped out. A color comparison could not be made due to the reflective and translucent properties of the surface of the scraping. There was no evidence of color change, cracking or flaking of the wire insulation.